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Preface
to the Russian Edition

Thermodynamics, as is known, is constructed quite simply. Two of 
its main laws have been established experim entally, and by applying 
m athem atical tools to them we can obtain the range of conclusions 
in which thermodynamics is so rich.

The m athem atical tools of therm odynam ics are simple but in 
certain aspects at the same tim e quite sophisticated. Neglecting 
some of these sophisticated “trifles” often results in crude mistakes, 
even in reputable works on thermodynamics.

The restricted size of the usual textbooks on thermodynamics does 
not perm it discussing more extensively these im portant questions 
concerning the m athem atical tools. For th is reason it was felt neces­
sary to consider these problems in a special book, which though lim ­
ited in size would at the same time go into details.

N aturally , the author does not aim at a presentation of thermo­
dynamics and its physical, chemical, and technical applications. 
These have been sufficiently discussed in the existing textbooks and 
monographs. The purpose of th is book is more modest—to deepen 
the reader’s knowledge of the m athem atical tools of thermodynamics, 
to systematize them, and at the same time to emphasize questions 
tha t are often a source of error in thermodynamic calculations. The 
book is therefore designed to meet the needs of students and graduates 
majoring in therm al physics, physical engineering, and physico- 
technical specialities who already have a background in general 
thermodynamics. I hope that the book m ay also prove useful to 
scientists, engineers, and teachers specializing in thermodynamics.

Comments on the contents of this book will be much appreciated.

V.V. Sychev
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1 Recollections 
of Thermodynamics: 
A Survey Chapter

This book considers the m athem atical tools of thermodynamics and 
its applications. I t is not intended to give a detailed analysis of the 
general problems of thermodynamics. Therefore, in this chapter we 
briefly discuss some concepts of thermodynamics necessary for sub­
sequent presentation.

1.1 Basic Concepts of Thermodynamics

1.1.1. The therm odynam ic quantities characterizing a substance 
are either intensive or extensive.

Intensive quantities are those whose values do not depend on the 
amount of substance in the system (pressure, tem perature, and some 
others).

Extensive quantities arc those whose values depend on the amount 
of substance in the system. Volume, which varies under given con­
ditions with the amount of substance, can serve as an example of 
an extensive quantity .

Specific extensive quantities, i.e. the values per unit amount of 
substance, behave like intensive quantities.

Intensive quantities th a t determine the state of a body or group 
of bodies (a therm odynam ic system) are called thermodynamic para­
meters of the state of the body (system). The most convenient and, 
therefore, the most widespread param eters of state are tem perature, 
pressure, and specific volume (density) of the body.

When no external forces act on the system, the state of a pure sub­
stance is uniquely determined if two intensive independent para­
meters are given. (When we have a m ixture of substances and when 
a system is under external forces, e.g. an external electric field or 
external magnetic field, the number of param eters necessary to 
determine uniquely the state of the system increases. In this book 
we will deal only w ith pure substances.) Any other param eter is a 
function of two given param eters. Hence, any three param eters of 
state (e.g. pressure p , specific volume v, and tem perature T) of a pure 
substance are uniquely related to each other. The equation th a t 
connects any three param eters is called the equation of state for a
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given substance. For each substance the relationship between these 
parameters is individual and, hence, therm odynam ic properties are 
described by an equation of state specifically for each substance.

The relationship between the param eters of state can be repre­
sented by the so-called state surjace in a system of coordinates (e.g. 
p, v, T) along whose axes the values of these param eters are laid off. 
The projections of th is thermodynamic surface on the coordinate 
planes (say p-v, p - T , or v-T planes) are called phase diagrams of the 
substance.

1.1.2. By a thermodynamic system we understand a collection of 
bodies interacting with each other and the surrounding medium; all 
other bodies beyond the boundaries of the system are called the sur­
rounding medium.

If at least one of the state parameters of the system changes, the 
state of the system changes, too, i.e. a thermodynamic process 
takes place. This process is a collection of varying states of the 
system under consideration.

1.1.3. Thermodynamic quantities can be divided into two catego­
ries: process functions and state functions.

Thermodynamic quantities whose values (with the state of the 
system varying in the course of thermodynamic process from in itia l 
sta te  1 to term inal state 2) depend on the path of the process 1-2 
are termed process functions. In other words, if v is a process func­
tion, the amount by which this function changes in the process 1-2, 
Vj_2, defined by the obvious relation

vz-* =  \ dv, (1.1)
V-2)

will differ depending on the path along which the line integral (1.1) 
is calculated. As is known from thermodynamics, heat and work are 
process functions.

Thermodynamic quantities whose values (with the state of the 
system varying in the course of a thermodynamic process from in itia l 
state 1 to term inal state 2) do not depend on what path the process 1-2 
takes and are defined only by the difference of the values of the given 
function in the term inal and in itial states, are termed state functions. 
In other words, if p is a state function,

2

d p =  { dp =  p2 — (1.2)
( i - 2 )  1

Internal energy, enthalpy, and entropy are examples of state 
functions.

1.1.4. Thermodynamic systems can perform different types of work: 
the work of expansion against external pressure, the work of in-
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creasing a surface area against surface tension, the work of displacing 
a body in a gravitational field, the work of polarizing dielectrics in 
an electric field, and so on. We know that although all these types 
of work differ greatly there is a common formula for calculating 
the work L :

d L = t d Y .  (1.3)

Here £ is the external force acting on the body (system), and Y  is 
the state param eter (coordinate) of the system conjugate to the force

It is common practice to call £ a generalized force and Y  a general­
ized coordinate.1

If a system performs work against external pressure p accompanied 
by an increase in volume V (the so-called work of expansion), then 
(1.3) becomes

dL =  p d V .  (1.4)

I t  should be noted tha t different types of generalized force have 
different generalized coordinates conjugate to them. When con­
sidering particular systems we will always establish what state para­
meter of the system is a generalized force and what a generalized 
coordinate.

If several types of force act sim ultaneously on a system, then 
evidently the work done by the system is the sum of the amount of 
work done by the system under the action of each force:

d L = t u < i Y i ,  (1.5)1=1

where is the tth generalized force, and ^Yt the generalized coor­
dinate conjugate to th is force; n the number of generalized forces.

Thermodynamic systems performing only work of expansion will 
be called simple systems, while those performing other work besides 
work of expansion complex systems.

In what follows we will consider systems performing either only 
work of expansion (i.e. simple systems) or performing no more than 
two types of work sim ultaneously, one being work of expansion. I t  is 
therefore expedient to represent the work L  done by the complex 
system as a sum of two terms: the work of expansion and any other 
possible type of work. Let us denote by L* any type of work other 
th an  expansion work p dV.  Then, obviously,

dL =  p d V  +  dL*.  (1.6)

1 Sometimes in the literature a generalized force is called an intensity factor 
and a generalized coordinate a capacity factor. These names indicate that 
generalized forces are intensive quantities and generalized coordinates extensive.
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We will also use the notations
dL* =  \ d W ,  ' (1.7)

where £ is a generalized force w ith the exception of pressure, and 
W  is a generalized coordinate with the exception of volume. In 
accordance w ith these notations Eq. (l.G) can he w ritten thus:

d L = p d Y + t d W .  (1.8)

Obviously, for mass specific values (i.c. per unit mass) of the 
therm odynam ic quantities in Eqs. (1.3) through (1.8) these equations 
can he w ritten  thus:

dl =  I dy , (1.3a)
dl =  p dv, (1.4a)

dl  =  f i U d y t ,I— 1
(1.5a)

dl =  p dv - f  dl*, (1.6a)
dl =  |  div, (1.7a)

dl =  p dv +  H div; (1.8a)

where v is the specific volume, and y and w the mass specific 
of the generalized coordinates V and W  (y — Y/G  and w = 
w ith G the mass of the substance in the system).

values 
= WlGr

1.2 The Equations of the First anil Second Laws of 
Thermodynamics

1.2.1. We know tha t the equation of the first law of therm odynam ­
ics, the law of conservation and conversion of energy, can be w ritten  
in the following form:

dQ =  dU  +  dL , (1.9)

where Q is the amount of heat supplied lo or rejected from a therm o­
dynamic system, U the internal energy of the system, and L  the  
work done by the system (or done on the system).

We noted above tha t neither Q nor L  is a state function; both 
depend on the process by which the system goes from state 1 to 
state 2. So dQ and dL, are, obviously, not total differentials.

For simple systems Eq. (1.9) combined with (1.4) is w ritten

dQ =  dU +  p dV, ( 1. 10)
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while for complex systems, using (1.5), (1.6), and (1.8), respectively,
n

dQ =  d U +  ' Z l i d Y , ,
i=l

(1.11)

dQ =  dU  +  p dV  +  dL*, (1.12)

and
dQ =  dU  +  p d Y  +  |  dW. (1.13)

In the same way, for mass specific values of 
quantities these relationships are w ritten thus:

thermodynamic

dq =  du +  p dv. (1.10a)
n

dq =  du -f- 2  £i dy^i=l
(1.11a)

dq =  du +  p dv +  dl* , (1.12a)
dq =  du +  p du +  £ dw. (1.13a)

1.2.2. E nthalpy is one of the most im portant thermodynamic 
quantities. For simple systems enthalpy H  is determined by the 
following relation:

H  =  U +  pV,  (1.14)

while for complex systems by the relation

//*  =  U +  p V  +  IW .  (1.15)

In the same way specific enthalpy for simple systems is

h =  u +  pv, (1.14a)

and for complex systems
h* =  u +  pv +  \iv. (1.15a)

1.2.3. The equation of the first law of thermodynamics for a sta ­
tionary flow of a liquid or gas in a channel can be w ritten in term s of 
(mass) specific quantities as

dq — dh -f- wdw + ' gdz -f- <iZteCh -f- dldiss, (1.16)

where q is the heat supplied to the flow (or rejected from it), h the 
enthalpy of the fluid, w the flow velocity, z the height, Ztech the 
so-called technical work done by the flow, £dlss the dissipative work 
(e.g. the work done by the flow in overcoming frictional forces), and 
g the acceleration of gravity.

The heat q in Eq. (1.16) consists of two parts: the heat qext brought 
into the flow from outside (or rejected from it to the surroundings)
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and the dissipative heat ^rJlss, liberated, for instance, when the 
flow involves friction:

Q =  9 e x t  +  <7d l s s *  ( l - l ? )

Since 7dlss is equivalent to ss, we can write Eq. (1.1G) in the 
following form:

dqcxi =  dh -f- wdw +  gdz +  d/lech; (1.18)

the equation is valid both with and w ithout friction in the flow.
1.2.4. An analytic expression for the second law of thermodynamics 

has the form
T d S ^ d Q ,  (1.19)

with S  the entropy of the system. In terms of specific quantities this 
relation is

T ds'^.  dq. (1.19a)

Here the “greater than” sign is used when the system undergoes an 
irreversible process, and the equality holds when the process is 
reversible.

Hence, for reversible processes
dQ =  T dS  (1.20)

and, respectively,
dq =  T ds. (1.20a)

1.2.5. From Eqs. (1.9) and (1.19) we can see that a combined 
equation for the first and second laws of thermodynamics can be 
w ritten as

T d S ^ z d U  +  dL.  (1.21)

For a simple system this relation together with (1.4) is transformed 
thus:

T dS  >  dU  +  p dV,  (1.22)

whereas for a complex system Eq. (1.21) combined with (1.5) yields
n

T d S ^ * d U +  2  £{dY „ (1.23)
i=l

or, which is the same, combining (1.21) with (1.6), we obtain

T dS  >  dU  +  p dV  +  dL*; (1.24)

for a complex system performing one more type of work besides work 
of expansion we can employ (1.7) and write

T dS  >  dU  +  p dV  +  I  dW. (1.25)
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In accordance with the above, when a system undergoes reversible 
processes, relations (1.21) through (1.25) have the form:

for all systems
T dS  =  dU +  dL, (1.26)

for a simple system
T dS  =  dU +  p dV, (1.27)

and for a complex system
71

T d S  =  d U +  2  I t d Y i ,
i=l

(1.28)

T dS — dU  -f- p dV  - f  dL* , (1.29)
T dS =  dU +  p dV  +  H dW. (1.30)

Obviously, for mass specific values of thermodynamic quantities 
Eqs. (1.21) through (1.25) are respectively w ritten in the following 
form:

T ds ^  du, +  dl, (1.21a)
T ds ^  du +  p du, (1.22a)

n
T d s ^ d u - \ -  2  It d y t,

i=l
(1.23a)

T ds ^  du -T p du +  dl*, (1.24a)
T ds ^  du +  p dv - f  £ dw, (1.25a)

and Eqs. (1.26) through (1.30) in the following form:
T ds =  du +  dl, (1.26 a)

T ds =  du +  p dv, (1.27a)
n

T ds =  du-\- 2  dy t,
1=1

(1.28a)

T ds =  du +  p du -\-Tdl*. (1.29a)
T ds =  du +  p dv -f- |  dw. (1.30a)

1.2.6. These are the basic therm odynam ic relationships that we 
will need in what follows.



2 The Mathematical Tools 
of Thermodynamics

2.1 Derivatives of Functions of Several Variables
2.1.1. Thermodynamics deals m ainly with functions of several 

variables. The following notation is assumed in thermodynamics: 
a partial derivative of a function z (xx, . . ., x n) with respect to the 
variable x-t is denoted by (dzldxt) x^ x.', here the subscript indicates 
th a t the derivative is taken assuming that the quantity  in the sub­
script is constant. For instance, the derivative of pressure w ith 
respect to tem perature, dp/dT,  showing how the pressure varies with 
tem perature, may be calculated in various conditions: at constant 
volume V, at constant entropy S . at constant enthalpy H,  and so on. 
In each case the derivative is denoted by (dp/dT)v , (dp/dT) s , or 
(dp/dT) H and differs in value.

The well-known relationships for the derivatives of functions of 
several variables are widely used when considering differential 
equations of thermodynamics. These relationships are given below 
in Secs. 2.1.2 through 2.1.5.

As a rule, we will consider thermodynamic quantities tha t are 
functions of two variables.1 I t  may happen tha t one of the variables 
is a unique function of another variable.

If a variable y is uniquely related to x  and, therefore, y =  y (x),; 
the function z (x, y) is, in the final analysis, a function of one vari­
able; consequently, dz/dx is a total derivative, dz/dx. For instance, 
the specific volume of a pure substance v is in general a function of 
two thermodynamic parameters (e.g. pressure p and tem perature T). 
However, the specific volume of a substance, va, on a boundary curve 
separating a one-phase region from a two-phase region is a function 
of only one variable, since, as we know, the pressure in a saturated 
state  is uniquely related to tem perature. Hence, in connection with 
the specific volume on the boundary curve we can say tha t the deriv­
ative of v with respect to T along this curve is a total rather than a 
partial derivative, dvJdT .  Therefore, below (Chaps. 6 through 9) 
we will deal w ith both partial and total derivatives of therm ody­
namic quantities.

1 Cases where a thermodynamic quantity is a function of more than two 
variables w ill be stipulated.



2. The Mathematical Tools of Thermodynamics 17

2.1.2. We will often use the well-known relations for partial deriva­
tives

d ? ) , - 1 / ( ! - ) ,  <2-«
and for to ta l derivatives

<2-2>

(these relations are also known as the theorem on inverse quantities) 
For instance,

d r ) . - 1 / ( - £ ) . •  <2-3>
and on the saturation line

< 2 - 4 >

2.1.3. We will examine differentiation of a composite function. 
If y =  y (u), and, in its turn, u =  u (xx, . . ., x n) and, hence, y =  
=  y (rtq, . . ., ;rn), then, as we know, the following relationship 
(the so-called chain rule) holds:

dy  N  /  du \
dxi  V.  du  / x = ^ = X j  \  dx{ )x=}i=xi

(2.5)

For the case of two variables, where y =  y (x, z) and u =  u (x, z) . 
this relationship is

(&), - (&), (£) , •  <2-6>
For instance, the chain rule enables us to write

< 2 - 7 >

obviously, here p — p (T, v) and s =  s (7\ v).
In a sim ilar manner, if we take a function of one variable, y =  

— y (a), and u =  u (x), then
dy _  dy_du_ g\
dx du dx '

For example, along the boundary curve

2 - 0 4 2 7

dp   dp dv
dT dv dT (2.9)
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Using (2.1) and (2.2), we can write (2.6) and (2.8), respectively, in 
the following form:

( dy \ ( jte_) f J j l) =  i
V dx Jz \  du Jz \  dy )z

and
dy dx du _^
dx du dy

2.1.4. When deriving im portant equations of thermodynamics, we 
make use of the Bernoulli-Euler theorem on the equality of mixed 
second-order derivatives, which states th a t if the mixed second-order 
derivatives of a function z (x, y) are continuous at point P (x , y), 
then they are equal at th is point. In  other words, for the function 
z (x , y) the value of its mixed second-order derivative does not depend 
on the order of differentiation:

d2z d-z 
dx dy dy dx ’

or, which is the same,

(2 . 12)

(2 . 10)

(2 . 11)

(2.13)

2.1.5. The relation between second derivatives d2y!dx2 and d2x/dy2 
is often used in thermodynamic equations. We see from (2.2) th a t

The right-hand side of the relation combined w ith (2.8) may be 
transform ed to the following form:

d ,f dx 1 d ( dx r 1 dy (2.15)dx 'v dy ) dy V dy ) dx ’

whence
d [ dx y -1 d-x / dy . Y (2.16)dx V dy ) dy2 \ dx )

and, consequently,
d2y _  
dx2

d2x ( dy Y  
\  dx ) • (2.17)

In the same manner wo can show that

2.1.6. These are some m athem atical relations generally used in 
the differential equations of thermodynamics.
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2.2 Pfaffian Forms and Total Difierentials
2.2.1. Differential relationships used in thermodynamics, such 

as those considered in Chap. 1 (the equation of the first law of therm o­
dynamics, the combined equation for the first and second laws of 
thermodynamics, the relations for the work of a therm odynam ic 
system, and the expressions for differentials of various therm odynam ­
ic functions), are sim ilar in structure and have the form
dZ == (xj, . . ., xn) dxy -f* . . . —I- A n (x^, • • •> 3Cn) dxTn (2.19)

where xlt . . ., xn are variables. The expression on the right-hand 
side,

H  A t (xv . x n) dx t, (2.20)
t=l

is called a Pfaffian differential expression or a Pfaffian form.
Obviously, the equation of the first law of therm odynam ics for 

simple systems, (1.10), is a Pfaffian form in two variables; for sys­
tems performing one more type of work besides work of expansion, 
(1.13) is the Pfaffian form in three variables; finally, for systems 
performing n types of work, (1.11) is a Pfaffian form in (n +  1) 
variables.

We know th a t the to ta l differential of a function of several (inde­
pendent) variables, z — z (xlt . . ., x n), is defined as

d z =  S  ( i ^ r ) x^ x . dXt‘ (2-21)
i= l

This is, obviously, a particular case of Eq. (2.19); here

A i (xv  • • ->xn) = ( - ^ r ) x^ x_. (2 -22)

In the m ajority  of cases we w ill consider functions of two variables 
and, therefore, deal with differential relations of the form

dZ =  M  (x, y) dx +  N  (x, y) dy (2.23)

and total differentials of the form

d‘ = { l t ) v d* +  ( w l dv- <2-24>

2.2.2. The most im portant question concerning thermodynamic 
relations of the type (2.19) or (2.23) is whether the Pfaffian form in 
the right-hand side of these relations is a to tal differential of Z. 
The point is th a t if dZ is a to ta l differential, the variation of Z  
when we move from point 1 (x1, yfi) on the state surface to point
•2*
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2 (x2, y2) is given sim ply by tlie difference between the values of Z 
at these points:

2

y d Z  =  Z2 — Z l. (2.25)
i

If dZ is not a to ta l differential, the variation of Z when we move 
from point 1 (xx, r/x) to point 2 (x2, y2),

AZi-2=  f dZ,  (2.26)
( 1- 2 )

is different depending on the path.
As we noted in Sec. 1.1.3, thermodynamic quantities are divided 

into two categories: state functions and process functions. From the 
aforesaid it is obvious th a t a special feature of a state function is 
th a t its differential is to tal, while for a process function its differen­
tia l is not to ta l.

I t  is very im portant to find a criterion which will enable us to 
determine uniquely whether a given Pfaffian form in an equation of 
the type (2.19) or (2.23) is a to ta l differential. Such a criterion was 
found by L. Euler.

If the Pfaffian form
M  (x , y) dx +  N  (x, y) dy (2.27)

is a to ta l differential, then, as noted above (see (2.22)),

and

(2.28)

(2.29)

Since, according to the Bernoulli-Euler theorem, for the function 
Z (x, y) the value of its mixed second-order derivative does not 
depend on the order of differentiation (see Eq. (2.12)),

d2Z _  d-Z 
dx dy dy dx ’

from (2.28) and (2.29) it follows tha t

This implies th a t if condition (2.30) is met for a differential relation 
of the type (2.32), then dZ is a to ta l differential and, hence, Z is 
a state  function. But if condition (2.30) is not met, i.e. (dM!dy)x =£
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(dNldx),,, the Pfaffian form on the right-hand side of (2.24) is not 
a to tal differential and Z is a process function.

The Euler condition (2.30) is an im portant m athem atical tool of 
thermodynamics. For instance, it enables showing that the differen­
tia l of an amount of heat is not total.

Let us consider the equation of the first law of thermodynamics for 
a simple system (1.10):

dQ =  dU  +  p dV.

The* above relationship implies that Q is a function of U and V.
According to the notations of Eq. (2.23), M  — 1, x  =  
and y — V. Hence,

U, N  =  p.
oII (2.31)

and
/ dN \ _ (  dp \
I dx )y \ dU ) v  ‘ (2.32)

In its turn,
( d P )  ( dp)  ( dT )
I au )v~~ { dT ) v \  dU ) v 9 (2.33)

i.e.
( dN ) 1 ( d p  )
\ dx )y Cv I dT ) v ’ (2.34)

where Cv — (dUldT)v is the to ta l heat capacity of the system. 
Since (2.31) differs from (2.34), the differential dQ is not to ta l and Q 
is a process function.

In the same manner we can show that the differential of work is 
not to tal. Take the work of expansion, for instance. Since here L  
is a function of two variables, pressure p  and volume V , for the 
differential of th is function we may generally write

But since by (1.4)
dL =  M  dp +  N  dV.

dL =  p dV,

(2.35)

according to the notations of (2.23) we can write M  =  1, x — p,  
N  =  p,  and y =  V\ therefore,

( w - ) . = ° -  <2 -36>

( t t ) , - 1- <2-37>
We see that the quantities (dMldy)x and (dNldx)v are different and 
the differential dL is not to tal.
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In the same manner we can show th a t for a function of three 
variables

dZ =  M  dx +  N  dy +  P du. (2.38)

and the Euler condition will have the following form: since

we find th a t

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

Conditions (2.42) through (2.44) may be represented in a brief 
form

curl R =  0, (2.45)

where R is a vector w ith components M, N,  and P.
In the general case of n variables the Pfaffian form (2.20) is a to ta l 

differential if and only if for all i and k  the following conditions are 
met:

dAi _ dAh
dxh ~~ dxt (2.46)

by analogy with (2.45) we can write these conditions in tensor form.
2.2.3. When differential (2.23) is not to ta l, i.e. condition (2.30) 

is not met, one would like to transform (2.23) so tha t it (or a pro­
portional expression) becomes a to ta l differential. From m athem ati­
cal analysis we know th a t there exists a function X (x , y) such tha t 
by m ultiplying it by the Pfaffian form (2.23) we obtain the to ta l 
differential of a function R (x , y). The function X (x , y) is termed 
an integrating factor. From this it follows th a t if X is an integrating 
factor for the Pfaffian form

dZ =  M  dx +  N  dy ,
then

XM dx-\-XN dy =  dR,  ( 2 -47 )
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where

and
(

dR \
dX )y

dR  \
dy

Whence
( d^M  \ _  / d%N \
V dy ) x ~  \  dx ) y ’

or

i.e.

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

This equation yields the sought quantity  X (x , y).
We can also show tha t any function of type

X1 =  k f ( R )  (2.53)

is also an integrating factor. In fact, the number of integrating 
factors is infinite (since we may construct an infinitude of functions 
of the Xl type).

Thus we have considered two types of Pfaffian forms: (a) Pfaffian 
forms that are to ta l differentials, and (b) Pfaffian forms tha t are 
not to ta l differentials but are proportional to such, i.e. have an 
integrating factor transform ing the Pfaffian form into the to ta l 
differential of a function R (x , y).

Moreover, there is a th ird  type of Pfaffian form. These are not 
to ta l differentials and have no integrating factor.

I t is customary to call Pfaffian forms of the second type (with 
integrating factors) holonomic and Pfaffian forms of the third type 
(without integrating factors) nonholonomic.

According to Cauchy’s theorem, a Pfaffian form in two variables 
is always holonomic, which follows from Eqs. (2.47) through (2.52).

As for Pfaffian forms in three and more variables, some are holo­
nomic while others are not. For one, a Pfaffian form in three variables,

M  dx Ar dy +  P du, (2.54)
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may be holonomic or nonholonomic. As is shown in m athem atical 
analysis, a Pfaffian form in three variables is holonomic if the fol­
lowing relationship2 is valid:

+ p [ ( ^ r ) , „ - ( 4 H . J = ° -  <2-55>

It should be noted tha t the problem of holonomic and nonholono­
mic Pfaffian forms in three and more variables is of great interest to 
thermodynamics. Although this problem is not directly connected 
w ith the main subject of the book, we think it expedient to consider 
it at least briefly.

Starting with the second law of thermodynamics in its trad itional 
form (formulated by R. J. Clausius), we can introduce the concept 
of entropy via the relation

dS = ^ - d Q .  (2.57)

Entropy is a state function and, therefore, its differential is to tal, 
unlike dQ. This means th a t the quantity  i / T  is an integrating factor 
for the Pfaffian form dQ.

Taking this fact into account, C. Caratheodory in 1909 suggested 
a statem ent of the second law of thermodynamics alternative to the 
traditional (Clausius) statem ent. Caratheodory confirmed tha t there 
exists an integrating factor for the Pfaffian form dQ (“the Pfaffian 
form dQ is holonomic”). He formulated the following criterion for the 
existence of an integrating factor for Pfaffian forms in more than 
two variables: a Pfaffian form dQ has an integrating factor if and 
only if arbitrarily  close to a given point (in a space of variables whose 
function the Pfaffian form is) there are points th a t can not be attained 
by moving from the given point along the surface dQ =  0.

The meaning of this statem ent is as follows. The differential 
equation of the type

n
2  A ^ X i  — 0 (2.58)
i=l

2 This relation can be written in vector form

R-curl R =  0, 

with notations the same as in (2.45).

(2.56)
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is known as the Pfaffian equation. If the Pfaffian form on the left- 
hand side of this equation is holonomic, the equation can he trans­
formed into

dR =  0, (2.59)
where

n
dR  (xt, x n) =  X(x l , ..., x n) Y i A i dx i- (2.60)

i = l
Since dR is a to tal differential, (2.59) has solutions

R  (xl5 . . x n) =  C, (2.61)

where C is a constant (it is obvious that there is an infinitude of such 
constants). Here (2.61) is the equation of a surface in n-dimensional 
space and, therefore, there is a fam ily of surfaces corresponding ta  
the solutions of this equation.

From the standpoint of the Pfaffian form dQ, Eq. (2.58) corresponds 
to an adiabatic system

dQ =  0. (2.62)

This explains why the surfaces (2.62) given by the solution of the 
Pfaffian equation are termed adiabatic surfaces. Caratheodory postu­
lated that these surfaces do not intersect. But if this is the case, 
then, obviously, a point (xa, . . ., x n) corresponding to a definite 
state of the thermodynamic system can belong to only one adiabatic 
surface. Consequently, arb itrarily  close to the considered state there 
are other states (points belonging to other adiabatic surfaces) that 
cannot be attained by moving along an adiabatic path from the 
given point. This statem ent (the principle of adiabatic inaccessibility) 
constitutes the main point of Caratheodory’s form ulation of the 
second law of thermodynamics: “In the immediate neighbourhood of 
each state of a system there are other states which cannot be attained 
by an adiabatic path alone.”

The meaning of this statem ent is clear, since it is easy to show that 
the converse is also true: if arb itrarily  close to the given state there 
are other states inaccessible by an adiabatic path, then, consequently, 
the Pfaffian form dQ is holonomic. Thus, if the principle of adiabatic 
inaccessibility is true, dQ is holonomic; as Caratheodory showed, 
from the fact th a t dQ is holonomic follows the existence of entropy of 
thermodynamic systems.

In considering Caratheodory’s theory we must clearly understand 
the following point. We know th a t the second law of therm odynam ics 
was formulated on the basis of data accumulated as a result of direct 
observations of macrosystems; this fact is included in the trad itional 
formulation of the second law of thermodynamics (the Clausius pos-
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tu late, which states tha t heat cannot transfer by itself from the cold 
body to the hot). I t  m ight seem th a t Caratheodory formulated the 
second law of thermodynamics purely theoretically w ithout employ­
ing experimental data (i.e. not postulating but “proving” the law). 
Actually this is not true: the principle of adiabatic inaccessibility 
is a postulate (i.e. a hypothesis assumed w ithout proof) to the same 
extent as the above mentioned Clausius postulate; in fact, Caratheo- 
dory’s principle in the final analysis postulates the unprovable pro­
position tha t the Pfaffian form dQ in n variables is always holonomic.

2.3 The Relationships Between Derivatives
2.3.1. The expression for the to tal differential of a function z (x , y)

dz =  M  dx N  dy, . (2.63)

where M  =  (dzldx)y and N  =  (dz/dy)x, clearly shows that

) .•  <2 -64>
This relationship is often used in thermodynamics. For instance, 
from Eq. (1.27a)

T ds =  du +  p du 

combined w ith (2.64) it follows tha t

r H r ) r  =  ( - £ - ) r + ' , ( - ? r ) r -  <2 -65>

It is clear th a t since M  — (dz/dx)y and Ar =  (dz/dy)x, Eq. (2.64)
can also he w ritten in the following form:

If we put m  =  x  and n =  z, we find that

Obviously, if a quantity  z is a function of two variables x and y , 
or z =  z (x, y), we are justified in considering x  as a function of y 
and z, or x =  x (y, z), and y as a function of x  and z, or y =  y (x, z). 
Equation (2.67) uniquely relates all possible derivatives of these 
three functions.

This equation (a linkage of three derivatives) is widely used in 
thermodynamics. According to (2.67), for p, v, and T we have

[ J l - \  ( J L . \  ( = _ i
I dT )v  V dv )p \  dp ) t

(2 . 68)
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for h, u, and s

H H  ( - J H  ( - S r ) . - - 1- <2-69>
and for p, s, and v

( i l i v K i ) . " - 1' (2-70)
2.3.2. If we set m =  x  but n ^  z, then from (2.66) there follows 

one more useful relationship:

<2-71>
This equation can be used to relate the partia l derivatives of given 

quantities th a t have been calculated with different constant para­
meters. For instance, if we wish to find the relation between the 
derivatives (dp/dT)v and (dp/dT)s, from (2.71) it follows that

/ dp 
V dT )„ - ( ~ f r ) ,  +  ('

dp
ds (2.72)

Concerning Eq. (2.71) the following question can arise: since z 
is, indeed, a function of only two variables, x  and y, the derivative 
(dzldx) from (2.71) is calculated w ith m  kept constant. But what is 
the quantity  m, a new variable? Not at all. The quan tity  z depends 
only on two variables, x  and y, and m  represents one more function 
of the same variables x and y. We illustrate th is statem ent w ith the 
following examples.

Let m =  x2 - f  2y. We wish to find the relation between the deriva­
tives (dz/dx)y and (dz!dx)x2 + 2J/. From (2.71) it follows tha t

< 2 - 7 3 >

On the other hand, using (2.67) we can write
d (x2-\-2y) j

ox \v
d (x- +  2y) ' ’

dy J x

whence we easily find that 

and, therefore,

( dz \ = ( - * Z - )
\  dx / x 2+ 2y \ dx ) v ( dy ) x m

(2.74)

(2.75)

(2.76)
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Let us suppose, further, that m =  xy. From (2.71) it follows that

( M  = (
\  dx )xy V

dz
dx ■)v+ (

dz \ / dy \ 
dy )x v dx / xy'

(2.77)

Equation (2.67) implies that
( dxy '

/ dy ) I dx )y (2.78)
V  dx ) xy ( dxy  ̂ 5

I dy )x
we also note that

(
' dy 
, dx  ̂xy

___ y_
X

(2.79)

and, hence,
{ dt )
V  dx J xy =  (-

dz \ 
dx ) y

V ( dz \
x \ dy l x * (2.80)

As we will subsequently show, Eq. (2.71) is widely used in the 
various transformations of thermodynamic differential equations.

2.3.3. In Sec. 2.1.1 we pointed out that in thermodynamics the 
quantities x and y in (2.24) may be rigidly related and, hence, z is 
in fact a function of only one variable x. From (2.71) it follows that

dz  / dz \ /  dz \  dy
dx V dx / 1/ \  dy ) x dx

We note that dz/dx is known as the total derivative.
In accordance with (2.8) we can write

dy   dy dz
dx dz dx

From (2.81) we then obtain the following:

On the basis of this we can obtain useful equations for calculating 
thermodynamic quantities (see Chap. 7).

(2.81)

(2.82)

(2.83)

2.4 The Legendre Transformation
2.4.1. The transformation that changes the roles of dependent and 

independent variables is called the Legendre transformation.3

3 This transformation, suggested by A. Legendre in 1789, is a particular 
case of the so-called contact transformations.
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Let us consider an arb itrary  function of several variables, 
F 1 (x , y, z, . . .). Obviously, a total differential of this function can 
be w ritten in the form

dF1 =  X  dx +  Y  dy +  Z dz -f
where

(2.84)

dF i 
dz ) x, V, ... 1

(2.85)
etc. Obviously, X ,  Y , Z, . . . are functions of variables x, y, z, 

Let us introduce the function
F 2 =  Ft — Xx.  (2.86)

I t  is obvious th a t
dF2 =  dF1 — X  dx — x d X ; (2.87)

whence, taking into account (2.84), we have
dF2 =  —x d X  +  Y  dy +  Z dz +  . . . . (2.88)

Thus, this transform ation yields the transition from independent 
variables x, y, z, . . .  to independent variables X,  y, z, . . .  and, 
hence, x  becomes dependent and X  independent. In other words, to 
change the roles of dependent and independent variables, it  is 
necessary to make use of the following relation:

X  dx =  d (Xx) — x d X .  (2.89)

2.4.2. As we w ill show below (Chap. 3), by applying the Legendre 
transform ation (2.89) to the function U we can obtain a num ber of 
im portant therm odynam ic functions (the so-called characteristic 
functions); here we use the relations of type (2.89), in which variables 
T, p,  and |  are substitu ted  for s, u, and w , respectively. F. Massieu 
was the first to apply the Legendre transform ations of therm odyna­
mic functions in 1869.

2.5 The Discontinuities of Thermodynamic Functions

2.5.1. The notion of continuity  of a function is one of the most 
im portant in m athem atics. We recall th a t a function /  (x) is said 
to be continuous at a point a if (a) this function is defined throughout 
a neighbourhood of a, (b) there exist lim its of th is function lim  /  (x)

x — a
from the left and right of point a, and (c) these lim its coincide w ith 
the value which the function assumes at x =  a. This definition can 
be w ritten  thus:

/  (a +  0) =  /  (a -  0) =  /  (a), (2.90)
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where we have introduced the following notations:

Jim /  (x) =  f (a -f- 0) (2.91)
sc —a + 0

and
lim  f (x)  =  f (a  — 0); (2.92)

x - * a -  0

hero x —>■ a +  0 means th a t x  tends to a from values of x  greater 
than a, and x — a — 0 means tha t x  tends to a from values of x 
less than a.

If condition (2.90) is not m et, then the function /  (x) has a dis­
continuity at point a.

I t  is customary to divide the points of discontinuity into two 
categories:

(1) Point a is called a point of discontinuity of the first kind if 
there exist the lim its of the function /  (x) from the left and right of a

Fig. 2.1

but at least one of these lim its, /  (a ~j- 0) or /  (a — 0), is distinct 
from /  (a).

(2) All other points of discontinuity are called points of discon­
tinu ity  of the second kind. Obviously, at a point of discontinuity 
of the second kind a function has no lim it.

Examples of the points of discontinuity of a function are given 
in Fig. 2.1; (a) a discontinuity of the first kind, and (b) a discon­
tinu ity  of the second kind.

2.5.2. In  the same way as we dealt above with a function of one 
variable, we can introduce the notion of a continuous function of two 
or more variables and, correspondingly, a classification of points of 
discontinuity of the function. Clearly, the points of discontinuity 
of a function z — z (x, y) can form a line of discontinuity, and 
the function undergoes a discontinuity when passing across this line.
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I t is the lines of discontinuity of a function tha t we have to deal 
w ith m ostly in thermodynamics.

2.5.3. Thermodynamic functions are continuous throughout a 
thermodynamic state surface except in the regions of phase tran ­
sitions. When we cross a bouudary curve separating a one-phase 
region from a two-phase region, thermodynamic functions undergo 
a jump; in other words, boundary curves are the lines of discon­
tinu ity  of therm odynam ic functions. For some functions this is a 
discontinuity of the first kind. Examples are the isochoric heat 
capacity cv. the adiabatic exponent, the sound velocity, and the 
Joule-Thomson coefficient. These undergo a finite jump when cros­
sing the boundary curve. For other thermodynamic functions, such as 
the isobaric heat capacity cp and the quantities (dv/dT)p and (dv/dp)T, 
this is a discontinuity of the second kind; everywhere on the boundary 
curve except at the critical point the functions have a lim it when 
approaching the boundary curve from the one-phase region and 
become infinite when approaching the curve from the two-phase 
region, while at the critical point there are no lim its of these func­
tions from either left or right.

The behaviour of thermodynamic systems on the lines of discon­
tinu ity  is treated in detail below, in Chaps. 6 through 8. I t  is con­
venient to consider the variation of a thermodynamic function of two 
variables, z =  z (x, y), w ith the value of one variable kept constant 
(e.g. with y =  const), i.e. to analyze the variation of the thermo­
dynamic function along the line y — const when this line intersects 
the line of discontinuity of the function (boundary curve).

2.6 Jacobians

2.6.1. A useful tool for the operations on thermodynamic differen­
tial equations is the functional determinants, or Jacobians.

The Jacobian of x  and y for two independent variables m  and n 
is the determ inant

dx \ ( dx >
dm ) n I\ dn )m
dy \ dy \

dm )n I dn ) m

where x =  f \  (m> n) and V — 1% ijn, n). The customary notation is

( dX )
( dx \

d (x, y) \  dm ) n  ̂ dn ) m
d( m,  n)

{ ) [ ^  )K dm In dn )m

(2.93)
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It is obvious that 
d(x, i/) =  - I — ) ( - 2 M  . (2.94)V dm / n \  dll ) vn V dn )m \ dm Ind (m, n)

2.6.2. Jacobians have the following basic properties. 
(1) Since according to (2.93)

9 (y . x) 
d (m , n)

{ J a - \
V dm )n  V dn I
/  dx \  I dx \
V dm In  V dn )

m

and, therefore,
d(y, x) _  I _dy_ \ f dx_ \ _  / dy_ \ f dx_ \ 
d (m, n) [ dm In \ dn )m \ dn )m [ dm ) n ’

comparing (2.95) and (2.96), we see that
d (I/, X) __ d (x,  y)
d (m, n)

(2) Since according to (2.93)

or

we see that

d (y, z) __ 
d (x , z)

d (Vi z)
d (x, z)

m

m

o

d (m, n)

(# ) ,

(1L

d (y, z)  ( dy \
d (x , z) V dx 12

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2 . 100)

It is obvious then that all partial derivatives can be represented by 
Jacobians.

(3) I t  is easy to sec that
d (y, x) d (a, b) d (y. x)
d (a, b) d (m, n) d (m, n)

(4) From (2.93) it also follows that
d (m. n)
d {m, n) 
d (x, x)

and
d (m, n)

=  1,

=  0,

d (k, x) 
d (m, n) =  0 if k =  const.

( 2 . 101)

( 2 . 102)

(2.103)

(2.104)
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2.6.3. Equations (2.97), (2.100), and (2.101) make it possible to 
transform the partial derivatives of thermodynamic quantities 
quite easily.4

Let us transform ,i or instance, the quantity  (dTldp)s. In accordance 
with (2.100) we may write

f— 1 =l dp 1,
d (T. s) 
o (p, s) (2.105)

According to (2.97),1
d (T. s) 
d (p. s>

d (s. T)
o(P,s) ’ (2.106)

while
d (s, T) d (s. T) 1 d (p, s) 

(p, T) 1 d(p , T) (2.107)

in conformity with (2.101). But according to (2.100),

d (s. T) 
d (p. T) ■ = ( w l (2.108)

and
d (p, s) 
d (P. T) = ( H -

(2.109)

Consequently, we see th a t

( £ ) . = - ( [ W ) r l ( w l (2.110)

Let us now express the quantity  (ds!dT)v in terms of {ds!dT)p. 
To this end we make the following transformations:

and, in accordance with (2.101),

d(s,v)__ d(s,v) I d(s,v) (0
d(T,v) d {T, p) I d(T,p) * K •

Since by (2.94)

r U £ ) r - ( £ M l r ) ,  <2'113)

4 In 1934 A.N. Shaw was the first to suggest using Jacobians for trans­
forming thermodynamic quantities.
3 - 0 4 2 7
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and
d (T, v)  l dv \
d(T, p) V dp ) t ’

combining (2.111) with (2.112) and (2.68), wc find tha t

(2.114)

(2.115)

2.6.4. In conclusion we note that transform ations of therm odynam ­
ic quantities can be performed w ithout resorting to Jacobians. 
For one, relation (2.110) obtained in the above examples readily  
follows from (2.67) and relation (2.115) from (2.71).



3 Characteristic 
Functions and 
Their Properties

3.1 The Basic Characteristic Functions
3.1.1. To examine the criteria for equilibrium  in thermodynamic 

systems we first introduce a number of im portant thermodynamic 
functions.

In Chap. 1 we noted that the combined equation of the first and 
second laws of therm odynam ics is generally w ritten in the form
(1.25):

T dS  >  dU  +  p dV  +  I dW.

This relationship provides an im portant criterion for establishing 
whether an isolated therm odynam ic system is in equilibrium . We 
recall tha t in therm odynam ics a system is called isolated if it does 
not exchange heat or work w ith the surroundings. Hence, in such 
a system the internal energy U , volume V, and generalized coordi­
nate W  (the la tte r corresponds to work other than expansion work) 
are constant.

In accordance w ith the second law of therm odynam ics the entropy 
of an isolated system tends to be m axim al; in equilibrium  it has the 
greatest possible value for such a system. Indeed, since for an isolated 
system dU =  0, dV =  0, and d W  =  0, from (1.25) we see tha t

dS  >  0. (3.1)

This condition determines the evolution of an isolated system. The 
inequality sign corresponds to a nonequilibrium  state of the system, 
when the system is still on its way, so to say, to equilibrium  state, 
and the equality  corresponds to a system already in equilibrium . 
Thus for an isolated system in an equilibrium  state

dS =  0, (3.1a)

which is the criterion for equilibrium  of an isolated system.
But if the system is not isolated from the surrounding medium 

and can in teract with it in some way (coupled with the medium, as 
is sometimes said), the criteria for equilibrium  will differ from (3.2). 
They depend on the conditions in which the system interacts (couples) 
w ith the surroundings.

3.1.2. For a system performing only work of expansion (simple 
system) the following four types of interaction between the system
3 *
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and the surrounding medium are the most interesting: V — const 
and S  =  const, p =  const and S  =  const, V =  const and T =  
=  const, and p  =  const and T =  const. The equilibrium  criteria 
for each interaction are as follows.

(1) Interaction conditions V =  const and S  =  const. We write 
the combined equation for the first and second laws of therm ody­
namics for simple systems (1.22),

T dS  >  dU  +  p dV,
in the form

dU  <  T dS  -  p dV.  (3.2)

This implies tha t the evolution of this system, in which dV  =  0
and dS =  0, is restricted by the condition

dU  <  0. (3.3)
Hence, in equilibrium

dU =  0. (3.3a)

Thus, as the system approaches equilibrium , its internal energy 
decreases, becoming m inim al in the equilibrium  state.

(2) Interaction conditions p =  const and S =  const. If, in ac­
cordance with (2.89), we apply the Legendre transform ation to p dV,

p dV — d (pV) -  V dp, (3.4)

and use the definition of enthalpy for simple systems (1.14),
H  =  U +  pV,  

we can transform (1.22) to
dH  <  T dS  +  V dp . (3.5)

This implies that a process in this system, in which dp =  0 and 
dS =  0, takes place in such a way th a t the condition

dH  <  0 (3.6)

is met; hence, in equilibrium
dH =  0. (3.6a)

Thus, as the system approaches equilibrium , its enthalpy decreases,- 
becoming m inim al in the equilibrium  state.

(3) Interaction conditions V =  const and T =  const. If we apply 
the Legendre transform ation to T dS,

T d S  =  d (T S ) -  S  dT,  (3.7)

we can transform (1.22)
d (U — TS) < ^ — S d T — p dV. (3.8)
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Introducing the notation
F =  U -  TS, (3.9)

we write (3.8) in the form
dF <  — S dT  — p dV. (3.10)

The therm odynam ic function F is called the isochoric-isothermal 
potential.

From (3.10) we can see tha t the evolution of this system, in which 
dT =  0 and dV =  0, is restricted by the condition

0. (3.11)

Hence, in equilibrium
dF =  0. (3.11a)

Thus, as the system approaches equilibrium , its isochoric-isother­
mal potential decreases, becoming m inim al in the equilibrium  state.

(4) In teraction conditions p =  const and T =  const. Taking into 
account (3.4) and (3.7), we can write Eq. (1.22) in the following form:

d (U +  PV  — TS)  <  — S dT +  V dp. (3.12)

Introducing the notation
O =  u  ■+ p V  -  TS,  (3.13)

we can write (3.12) in the form
d<D <  — S dT  +  V dp. (3.14)

The therm odynam ic function O is called the isobaric-isothermal 
potential.

From (3.13), (1.14), and (3.9) we see tha t

O =  H  — T S  (3.15)
and

<D =  F - f  pV.  (3.16)

I t  is evident from (3.14) tha t a process in an isobaric-isothermal 
system takes place in such a way th a t the condition

dO <  0 (3.17)

is met; hence, in equilibrium
dO =  0. (3.17a)

Thus, as the system approaches equilibrium  its isobaric-isothermal 
potential decreases, becoming m inim al in the equilibrium  state.

We have thus stated the equilibrium  criteria for simple thermo­
dynamic systems.
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3.1.3. When a system performs work other than work of expansion 
(a complex system), the above criteria will he somewhat different. 
For a complex system the combined equation for the first and second 
laws of thermodynamics w ritten in the form (1.24),

T dS  >  dU  +  p dV  +  dL*,

where in accordance with (1.7)
dL* =  I d W ,

yields the following results for the above four cases of a system 
interacting w ith the surrounding medium:

(1) Interaction conditions V =  const and S  =  const:
dU  +  dL* <  0, (3.18)

i.e. in the equilibrium  state
dU  =  —dL*\  (3.18a)

(2) In teraction conditions p =  const and S  =• const:
d l l  +  dL* <  0, (3.19)

i.e. in the equilibrium  state
dH =  —dL*] (3.19a)

(3) In teraction conditions V =  const and T =  const:
dF +  dL* <  0, (3.20)

i.e. in the equilibrium  state
dF =  —dL*] (3.20a)

(4) In teraction conditions p =  const and T  =  const:

dO) +  dL* <  0, (3.21)

i.e. in the equilibrium  state
dd) =  — dL*.  (3.21a)

As for a system th a t interacts w ith the surroundings under the 
conditions th a t U and V are constant, it is clear tha t when the system 
is complex, these conditions do not yet ensure that it is isolated (for 
th is it would also be necessary to have W  constant). We see that in 
th is case, as is evident from Eq. (1.24),

or, which is the same,

(3.22)
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i.e. in the equilibrium  state

d S = j r d W .  (3.24)

The quantities U, H, F , and O are known as characteristic functions.
It is im portant to note tha t the functions F and O are formed from 

state functions S , £/, and II  and, hence, are state functions, too. 
Therefore, all four characteristic functions are state functions and, 
lienee, their differentials are total.

We can see from Eqs. (3.18a), (3.19a), (3.20a), and (3.21a) that 
the work a complex system can perform under given conditions of 
coupling w ith the surrounding medium (after we have subtracted the 
work of expansion1 *) is equal to the decrease in the corresponding 
characteristic function. This is why, by a well-known analogy with 
mechanics, the characteristic functions U, H, F, and ® are called 
thermodynamic potentials.

3.1.4. Characteristic functions have the following im portant pro­
perty: if a characteristic function is known in terms of the corre­
sponding variables (different for each characteristic function), it  can 
be used to calculate any thermodynamic quantity . This is easily 
verified.

(1) From Eq. (1.22) w ritten in the form

dU =  T dS — p d V  (3.25)

and combined with Eq. (2.63), we see th a t

( w ) v = T <3 -2 6>

and

Thus, if the function U is expressed in terms of the variables V 
and S,  differentiating U with respect to one of these variables, pro­
vided that the other variable is kept constant, enables us to deter­
mine the values of p and T . As a result the values of U , V, S , p, and 
T  are known, and we can easily calculate H, F, and ®.

(2) Taking (3.4) and (1.14) into account, we can write Eq. (3.25) 
in the form

dH =  T dS +  V dp\ (3.28)

1 In accordance with (1.6),
dL* =  dL — p dV,

which is why L* is sometimes called the net work.
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whence it follows th a t2

and
( 4 f - ) P= T <3-29>

( 4 f ) s = F .  (3.30)

Thus, if the function II  is expressed in terms of the variables p  
and S,  differentiating I I  w ith respect to one of these variables, pro­
vided th a t the other variable is kept constant, we can determine T 
and V. Whence we know the values of II, V, S,  p,  and T  and can 
easily calculate U , F , and O.

(3) If we use (3.7) to replace T dS  in Eq. (3.25) and take into 
account (3.9), we find tha t

dF =  — S dT — p dV.  ' (3.31)

I t  is evident from this relation tha t

and

(3.32)

(3.33)

Thus, if the function F is expressed in terms of the variables V 
and T, differentiating F w ith respect to one of these variables, pro­
vided th a t the other variable is kept constant, we can determine S  
and p.  Whence we know the values of F, S,  p, V, and T and can 
calculate U, H , and <D.

(4) F inally , using (3.9) and (3.15), we find from (3.28) tha t

Whence it is clear tha t

and

=  — S dT  +  V dp. (3.34)

( I H = - 5 (3.35)

(3.36)

Thus, if the function O is expressed in terms of the variables p 
and T , then differentiating cD with respect to one of these variables, 
provided th a t the other variable is kept constant, we can determine S

2 The reader must bear in mind that any function formed by a simple algebra­
ic combination of state functions is itself a state function and, therefore, its 
differential is total.
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and V. Whence we know the values of (l>, S,  p , V, and T and can. 
calculate U, H , and F.

3.1.5. Characteristic functions are additive quantities. Conse­
quently, the values of characteristic functions for an entire thermo­
dynamic system can be represented as a product of a specific (per unit 
mass) characteristic function by the mass of substance in the system:

Internal energy

II (3.37)
E nthalpy

H  =  hG, (3.38)
where

h =  u +  pv. (3.39)

Isochoric-isothermal potential
F =  JG, (3.40)

where
/  =  u — Ts. (3.41)

Isobaric-isothermal potential
O =  <p G, (3.42)

where
cp =  u -|- pv  — Ts, (3.43)

or, which is the same,
fp — h — Ts (3.44)

and
<P =  /  +  Pv- (3.45)

It is clear of course tha t if the amount of substance in the system
is fixed (G =  const), the relations (3.25)-(3.27) can be represented
in the following form:

du — T ds — p dv. (3.25a)

( du 't — T 
[ ds J v - 1 ' (3.26a)

{ % ) . — *
(3.27a)

the relations (3.28)-(3.30) in the form

dli =  T ds +  v dp, (3.28a)

(3.29a)

(3.30a)'
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the relations (3.31)-(3.33) in the form

df =  —s d'T — p du, (3.31a)

( - S O . — - ’ (3.32a)

(3.33a)

and the relations (3.34)-(3.36) in the form
d(\ =  —s dT  +  v dp , (3.34a)

( & ) , — • (3.35a)

{ v r ) r  =  v - (3.36a)

3.1.6. Let us now consider the equilibrium  criteria for systems 
in other conditions of interaction with the surroundings; namely, 
when in addition to the conditions enumerated above the values of 
generalized force H or generalized coordinate W,  which characterize 
the given type of work, remain constant.

As for an isolated system (£/, V, and W  constant), according to 
the second law of thermodynamics the equilibrium  criterion, as noted 
above, states that the system’s entropy must be maximal; this is 
evident, in particular, from the combined equation of the first and 
second laws of thermodynamics for a complex system w ritten in the 
form (1.25):

T dS  >  dU +  p dV  +  c dW.

If we turn to systems that interact with the surrounding medium, 
we discover tha t the following types of interaction are of interest: 
V, S , and W  are constant; p, S,  and £ are constant; V, T, and W  
are constant; and p, T, and £ are constant.

To find the equilibrium  criteria for such systems we will use the 
method employed above.

(1) Interaction conditions V, S.  and W  constant. If we write 
Eq. (1.25) in the form

dU <  T dS -  p dV  -  |  dW,  (3.46)

we can see that the evolution of a system, in which dV =  0, dS =  0, 
and d W  =  0, is determined by the condition

dU <  0; (3.47)
lienee in equilibrium

dU =  0. (3.47 a)
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Thus the criterion for equilibrium  for a complex system, in which 
E, S,  and W  are constant, is the same as for a simple system w ith V 
and S  constant (see Eqs. (3.3) and (3.3a)).

(2) In teraction conditions p, S,  and £ constant. The product H dW  
in Eq. (1.25) can be represented via the Legendre transform ation 
(2.89) as

I d W  =  d (HIE) — W  dt  (3.48)

Combining this relation w ith (1.14) and (3.4), we can transform 
Eq. (1.25) to

d (H +  HIE) dS  +  V dp +  IE dt .  (3.49)

From (1.14) and (1.15) it is evident that
H  - f  HIE =  H*;  (3.50)

using this relation, we can write (3.49) as

dH* <  f  dS +  V dp +  IE d t  (3.51)

We can see tha t in a complex system in which dp =  0 , dS =  0, 
and dg =  0 the evolution is determined by the condition

dH* <  0; (3.52)

hence in the equilibrium  state
dH* =  0. (3.52a)

The reader will recall that the quantity  H* is the enthalpy of a 
complex system; it is related to the enthalpy H  by Eq. (3.50), and 
in accordance w ith (1.15)

H* =  U +  p V  +  IW.

Thus, the equilibrium  criterion for the complex system under 
consideration is the same as for the simple system in which p and S  
are constant (see Eqs. (3.6) and (3.6a)), the difference being tha t the 
quantity  H* in Eqs. (3.52) and (3.52a) differs from the usual en­
thalpy H.

(3) Interaction conditions E, T, and W  constant. If we use Eqs.
(3.7) and (3.9), we can write (1.25) as

dF <  — S dT  — p dV — E dW.  (3.53)

I t  follows th a t in a complex system in which dV  =  0 , dT =  0, and 
d W  — 0 the evolution is determined by the condition

dF <  0, (3.54)
i.e. in equilibrium

dF - 0. (3.54a)
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Thus, the equilibrium  criterion for this complex system is the- 
same as for a simple isochoric-isothermal system (see Eqs. (3.11) and 
(3 /lla)).

(4) Interaction conditions p, T , and H constant. Considering (3.4)r
(3.7), (3.13), and (3.48), we can transform Eq. (1.25) to

d (O +  HIE) <  — S  dT  +  V dp +  bE dl .  (3.55)

We introduce the notation

O* =  (D +  IW.  (3.56)

Then (3.55) becomes

d®* <  - S  dT  +  V dp +  W  d%. (3.57)

Whence it follows tha t in a system in which dp =  0, dT =  0 , 
and dH =  0 all processes occur in such a way that

d®* <  0, (3.58)

i.e. in equilibrium

d®* =  0. (3.58a)

The quantity  ®* can be regarded as the isobaric-isothermal poten­
tia l for a complex system. This quantity  is related to the common 
isobaric-isothermal potential via Eq. (3.56).

From (3.13), (3.15), (3.16), (3.50), and (3.56) we see th a t

®* =  U +  p V  +  I W  — TS,  (3.59)
®* =  I I * — T S , (3.60)

and

®* =  F - f  p V  +  HIE. (3.61)

In this form the equilibrium  criterion for a complex system is 
sim ilar to th a t for a simple system (see Eqs. (3.17) and (3.17a)), the 
difference being th a t Eqs. (3.58) and (3.58a) contain <D* instead of 
the usual isobaric-isothermal potential ®.

These are the criteria of equilibrium  for thermodynamic system s 
th a t perform other work besides work of expansion and whose con 
ditions of interaction w ith the surroundings are such th a t, in addi­
tion to the usual interaction conditions, either H or W  is kept con­
stant.

3.1.7. In conclusion let, us consider relationships sim ilar to Eqs.
(3.25) through (3.45) for the case of a complex therm odynam ic system.
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(1) From Eq. (1.30) w ritten in the form
dU  =  T dS — p dv — I d W , (3.62)

we have

(3.63)

( du \
\ dV )s, vv (3.64)

and
t dU \
vaw’ J s . v -

(3.65)

If the amount of substance in the system remains unchanged
<G = const), we can write the same relations for specific quantities:

du — T ds — p dv — £ dw, (3.62a)

( — ) = T ' \ ds / v, io (3.63a)

(3.64a)

and

(3.65a)

(2) Combining (3.4), (3.48), and (3.50), we can transform Eq. (3.62)
to

dH* =  T dS  +  V dp +  W  d%. (3.66)

Whence it is evident that

( dII* \  - T \ dS )P, t  ’ (3.67)

( M * )  - V ,V op Is, 1 (3.68)

( sh: \  = w .V /s, p (3.69)

For the specific quantities the relations are as follows:
dh* =  T ds +  v d p w (3.66a)

(dh* \ T
V  ds )P, l (3.67a)

( dh* \
1 dp )«, l ~ V'

(3.68a)

and
( dh* \
V dl ) s , p ~ W•

(3.69a)
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Here, obviously,
h* =  h +  tw,  ■ (3.50a)

or
h* = u +  pv  + (3.53a)

and
H* =  h*G. (3.38a)

(3) If we substitute the quantity T dS  in Eq. (3.62) by applying 
(3.7) and bear in mind (3.9), we find that

dF =  — S dT — p dV — I d W , (3.70)
which implies that

(3.71)

II£e-i (3.72)

and

( d F ) =  E.V dlV /T, V (3.73)

The relations for specific quantities are w ritten in sim ilar form:

df =  —s dT  — p dv — |  dw. (3.70a)

(3.71a)

and
(3.72a)

( i n  = - e.\dw ) t , v
(3.73a)

(4) Finally, substituting in (3.66) the quantity  T dS  
of (3.7) and bearing in mind (3.60), we get

w ith the help

deb* =  — S dT  +  V dp +  W dl,
whence

(3.74)

m , 4= - 5 '
(3.75)

and

(3.76)

(3.77)
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Sim ilar relations for speciiic quantities have the following form:
d(p* =  —s dT  +  v dp +  w dh, (3.74 a)

(3.75a)

( ^ ) T. , —
(3.76a)

and

(T )V <?£ I T .  v
(3.77a)

From (3.5C) and (3.59) through (3.G1) it is clear that
cp* =  cp -f- cw, (3.56a)

or, Avhich is the same,
rp* =  u +  pv +  \w  — Ts, (3.59a)

4=
5 * 1! *

C
o (3.60a)

and
cp* =  /  +  pv  +  \w. (3.61a)

It is also clear tha t
(!>* =  cp *G. (3.42a)

3.2 The Chemical Potential
3.2.1. The chemical potential is one of the most im portant therm o­

dynamic functions.
The chemical potential of a substance is its mass specific isobaric- 

isothermal potential. For simple systems it is defined by relation
(3.43)

cp =  u +  pv  — Ts,

while for complex systems by (3.59a)
cp* =  u +  pv  +  %w — Ts.

The chemical potential occupies a special position w ith respect 
to other mass specific thermodynamic potentials, such as the internal 
energy u, enthalpy h (or h*), and isochoric-isothermal potential /. 
The explanation is as follows.

3.2.2. When we considered the equilibrium  criteria for therm ody­
namic systems th a t interact Avith the surrounding medium, Ave tacitly  
assumed that the amount of substance G in the system does not 
change. However, in a number of problems it is necessary to estab­
lish how the thermodynamic potentials of the system change Avhen 
a certain amount of substance is taken from or added to the system.
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(N aturally, the substance added must have the same state para­
meters as the main substance.) Hence we must find the quantities:

(a) simple systems

{ l i u ) v  s f01‘ sysleras V and S  constant, ^for systems

witli p and S  constant, for systems with V and T constant,

( ^ )  t  ^°r syslems P anc* F constant,
(b) complex syslems

for systems wiLli V, S , and W  constant, ( for\ 8G Jv, s, w \ dG Jp,S,Z
systems w ith p , S , and |  constant, T w  f°r systems with

V. T, and W  constant, for systems with p, T , and c
\ o& Jp,T, l

constant.
3.2.3. Often we encounter a rather widespread fallacy. The relations 

for simple systems given above, namely

U =  uG, (3.37)
H  =  hG, (3.38)
F =  }G, (3.40)

cb =  cpG, (3.42)

and the equivalent relations for complex systems yield, it may appear 
at first glance, the triv ia l conclusion th a t (dU/dG)v ,s is equal to u, 
(dH/dG)ptS to h, (dF/dG)V' T to /, and so on. This conclusion is wrong. 
Consider, for example, the derivative (dU/dG)VtS■ If the derivative 
dU/dG were computed under the condition tha t the state parameters 
were constant (say, s and u were constant), the specific internal 
energy u would also be constant and from (3.37) it would follow that

(3.43)

However, the point is that (dU/dG) s>r is computed provided th a t the 
values of entropy and volume of the entire system are constant 
(S  and V are constant), whereas from the elementary relations of 
add itiv ity  of entropy

S  =  sG
and volume

V =  uG

(3.78)

(3.79)

it  is clear tha t, if S  and V are constant and G varies, the values of the 
specific quantities s and v (and, naturally , all other state parameters
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of the system) also vary, and so does the value of u. I t is obvious 
then that

(3.80)

The reader must clearly realize the fundam ental difference between 
these derivatives. The following quantities differ in the same way: 
(dH/dG)Pts and (dH/dG)PtS =  h, and (dFldG)ViT and (dF/dG)D<T =  /.

3.2.4. Now let us compute the derivatives of the thermodynamic 
quantities listed in Sec. 3.2.1.

(1) The derivative (dTJ!dG)r,  ,s. I t is evident that (see (3.37))

whence

/ dU N __/  duG \
I dG j v, S  \ dG j v ,  s ’

(3.81)

(3.82)

Further, in accordance with (2.71) we can write
/ du \  / du \ ( du_ \ / _ds_ )
I dG ) v , s  V dG ) v ,  s ‘ I ds / v,  c V dG Jv,  s ’

(3.83)

In a sim ilar manner we can write for the quantity  (du/dG)v ,s in 
Eq. (3.83) the following:

(3.84)

hence, (3.83) can be represented in the following form:
/  du \  ___ / du \ / du \ / dv \ / du_ \ /  _£s_ \
V dG Jv ,  S  I dG jv ,  s+ l  dv ) g ,  s \  dG ) v ,  s ~ ^  \  ds /  y ,  g I dG j v ,  s '

(3.85)

Let us consider the partial derivatives on the right-hand side of 
this relation.

First, since it is obvious tha t if v and s are constant, i.e. therm o­
dynamic param eters of the system remain unchanged, by virtue of 
this u =  const; consequently,

(3.86)

Second, the fact tha t the quantity  G is kept constant in the process 
of differentiation is not necessarily applied to specific quantities; 
hence it is understood tha t (du/dv)Ĝ s is sim ply the derivative 
(du/dv)s. Therefore, taking into account (3.27a), we find th a t

4 - 0 4 2 7

=  — P- (3.87)
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Third, since, as it is clear from (3.79),

we see tha t

or, which is the same,

II (3.79a)

dv \ V
(3.88)dG Jv, s G2 5

dv \ v 
JG Jv , s~  ~~~G' (3.89)

Fourth, if in the process of differentiation V  and G remain constant, 
then v is constant and, if we bear in mind (3.26a), the derivative 
(,du/ds)VtG can be w ritten thus:

( — ) = T .
\  ds J V, G

(3.90)

Last, since from (3.78) it is evident tha t
5 =  SIG, (3.78a)

we see that

II I (3.91)

or, which is the same,
/ ds  ̂ s 
{ ~dG )v, S G~'

(3.92)

Substituting (3.86), (3.87), (3.89), (3.90), and (3.92) into (3.85), 
we obtain

( du \ pv —  Ts 
I dG Jv, S G

(3.93)

Combining this with (3.82), we find th a t

{ % ) v , s = u + i ,v - Ts■ (3.94)

or, bearing in mind (3.43),
(dU \
( a c ) v . (3.95)

(2) The derivative (d I I / d G )p , From (3.38) it is clear tha t
( dH \  _  ( dhG \
\ dG )p, S V dG ) p, S (3.96)

and, hence,

{ ^ ) p , s - h J r G { ^ ) P, s (3.97)
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In accordance w ith (2.71) we write
/ dh A __ / d/j \  . ( dh \ I ds \
I dG ) p,  s  \ dG ) p,  s [ ds ) P, g \ dG / p ,  s ’

which implies tha t

(3.98)

(3.99)

In fact, if the state param eters of the system remain unchanged 
(p and s are constant), h cannot vary either.

I t  is obvious (see (3.29a)) that
/  dh
I'd* )  = T '>V,  G

(3.100)

while if we bear in mind ,(3. 78a)
s =  SIG,

we obtain

V dG ) p.
S

S ~  Gs 5 (3.101)

or, which is the same,

f — )V dG )  p,
s

s ~  ( T m
(3.102)

Substituting (3.99), (3.100), and (3.102) into (3.98), we get

I dG ) p .

Ts
, 8 ~  G •

(3.103)

Therefore, Eq. (3.97) can be w ritten in the form

( i r ) p . s = ft- n -
whence it is clear (see (3.44)) tha t

(3.104)

(3.105)

(3) The derivative (dFldG)v,  t- From (3.40) it is evident that

or, which is the same,

( ig - )v ,  r = f  +  G { j s ) v .  r-  
If we use (2.71), we find tha t

(3.106)

(3.107)

4 *

(3.108)
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If v and T are constant, then /  is constant too. Hence,

( 4 r )  = 0 .
V dG J v , T

(3.109)

From (3.33a) it is clear that

( * L )  = - P,
V dv ) g ,  T  ^

(3.110)

while from (3.79a)
v =  VIG

it is clear that
( dv \  _  V 
[  dG / V ,  T  G2 ’

(3.111)

or
(  dv \  __ v
V dG )v, T  G

(3.112)

Combining (3.109), (3.110), and (3.112), we find from (3.108) th a t

( M . \  — J!L
\ dG )v, T  G

(3.113)

If we substitute th is value into (3.107), we obtain
t dF 
{ dG

or, using (3.45),
' - ) v ,

(3.114)

(3.115)

(4) The derivative (dO/dG),,, T- This is computed very sim ply. 
Indeed, from (3.42) it is clear tha t

(3.116)

But since at p =  constant and T =  constant tp is also constant,
naturally

( 22 . )  = 0  
I dG I p .  T

(3.117)

and, hence,

e

II -G (3.118)

3.2.5. Thus, we have arrived at a somewhat unexpected conclusion 
that for systems in which V and S  are constant, p and S  are constant, 
V  and T are constant, or p and T are constant the derivative of the
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corresponding characteristic function w ith respect to the amount of 
substance in the system is equal to cp, i.e.

/ dU \ _  ( oH_\ _ / _ £ M  _
V dG Jv, s  I  dG ) P, s  V dG ) y ,  t  V dG )p, t

(3.119)

It is easy to show th a t for the corresponding complex systems we 
have sim ilar relationships:

where cp* is defined in (3.59a).
Thus, the quantity  <p (or <p* for complex systems) has a rem ark­

able property: it enables us to compute the variation of a character­
istic function of any system when the amount of a substance in the 
system is varied; for th is reason th is quantity  has been termed the 
chemical potential.

3.2.6. I t  is appropriate to note th a t the question of the chemical 
potential is usually presented in thermodynamics courses in such 
a concise form th a t the reader often does not understand why this 
seemingly ordinary thermodynamic function, the specific isobaric- 
isothermal potential, occupies a special place as compared to other 
specific characteristic functions. We may often come across gross 
errors in both presenting these questions and using th is quantity  in 
com putations. The reason for this, in our opinion, is also the fact 
tha t when employing the traditional method of deriving relations 
(3.120), the m athem atical and physical sense of the operations per­
formed is concealed. Let us consider, for example, how the quantity  
(dU/dG)V'S is calculated in thermodynamics.

(3.120)

From (3.37)
U =  uG

it  follows tha t
dU  — G du -}- u dG\ (3.121)

since in accordance w ith (3.25a)
du =  T ds — p dv.

Eq. (3.80) can be transformed to
dU  =  TG ds — pG dv -j- u dG. (3.122)

Using Legendre transform ations
G ds — d (Gs) — s dG (3.123)

and
G dv =  d (Gv) =  v dG (3.124)
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und combining (3.78) w ith (3.79), from (3.122) we find that

dU =  (u +  pv — Ts) dG +  T dS  -  p dV.  (3.125)

Since in the system under consideration S  and V are constant, 
taking into account (3.43) we obtain for the given system

dU =  y d G  (3.126)

and whence

=  <p.

The method of deriving relations (3.120) given above, Sec. 3.2.4, 
appears to have certain advantages as compared to the method con­
sidered here.

3.2.7. One more remark is in order. As noted earlier (see Sec. 3.1.1), 
the quantity  that characterizes the equilibrium  state of an isolated 
system is entropy (in the equilibrium state entropy is maximal). 
Entropy is not a thermodynamic potential. I t is interesting to note, 
however, tha t the derivative of the entropy of an isolated system 
with respect to G is closely related to the chemical potential. Indeed, 
(3.78) yields

(3.127)

Using (2.71), we find that

and, in its turn,

( 5G )u. V=  +  ( i r l u .  C ( l ^ ) u .

(3.128)

(3.129)

These relations yield

Next, since (a)
(3.130)

(b) it  is obvious from (1.27a) that

(3.131)
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(c) according to (3.26)
ds_\ 1
du ) G, V T ’

and from (3.37) and (3.79) it follows, respectively, th a t (d)
( d u \  __ ______ u_
\  dG ) u ,  V G

(3.133)

(3.134)

and (e)

from (3.130) we obtain
/ ds_ \   u-\-pv
{ dG ) u, V ~  TG

If we substitute (3.136) into (3.127), we find that
/ dS \   u -j~ pv — Ts
I dG ) u , V ~  T ’

or, using (3.143),
( dS \
I dG )u, v  T *

(3.135)

(3.136)

(3.137)

(3.138)

Obviously, th is relation refers to a simple isolated system (U and V 
constant). A sim ilar relation can be obtained for a complex isolated 
system (C7, V, and W  constant):

( dS \   cp*
I dG )u,  v ,  tv T (3.139)

We also see tha t in the case where the amount of substance in the 
system changes (i.e. when one more variable appears characterizing 
the state of the system, the amount of a substance in the system G), 
the expression for the total differential of the entropy of a simple 
system can be w ritten in the following form:

d S = { w ) y . a d V + [ w ) V. o d V + { ^ ) V. y dG- <3’14°)

Then, from (3.26) it is clear tha t

and from (1.27) it follows th a t

(3.141)

p_ 
T ’ (3.142)
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Combining these relations w ith (3.139), we find from (3.140) th a t

dS  =  ±  dU +  dV -  -2- dG, (3.143)

or
T dS =  dU  +  P dV  — <p dG. (3.144)

In a sim ilar manner for a complex system we obtain
T dS =  dU  +  p dV  +  H d W  — cp* dG. (3.145)

For simple and complex systems, respectively, relations (3.142) 
and (3.143) represent the combined equation of the first and second 
laws of thermodynamics for systems w ith variable amount of sub­
stance.3 Both are sometimes called the fundam ental equation of 
Gibbs.

3.2.8. From (3.119) and (3.120) it  is clear th a t the to ta l differentials 
of the characteristic functions expressed through “their” variables 
(for the case when the amount of substance in the system changes) 
have the following form for simple systems:

dU =  T dS  — p dV  +  cp dG, (3.146)
dl l  =  T dS V dp -\- cp dG, (3.147)
dF — — S dT  — p dV  +  cp dG, (3.148)

d® =  — S dT  +  V dp +  cp dG (3.149)

and, respectively, for complex systems:
dU =  T dS  — p dV  — £ d W  +  cp* dG, (3.150)

dH* =  T dS  +  V dp +  W  dg +  <p* dG, (3.151)
d F =  — S  dT — p dV — % dW  +  cp* dG, (3.152)

d®* =  — S  dT  +  V dp +  W  dl  +  cp* dG. (3.153)

3.2.9. Employing Legendre transform ations (3.7), (3.4), and
cp dG — d (cpG) — G dep (3.154)

and assuming that in accordance w ith (3.42)
® =  cpG, 

we can transform Eq. (3.144) to 
d (T S ) — S  dT =  dU +  d (pV) — V dp — dO +  G dq>, (3.155) 

or, which is the same,
S  dT  — V dp +  G dtp +  d (U +  p V  — TS) — dO =  0. (3.156)

3 We note that it is not obligatory to use the mass of a substance as a variable 
characterizing the amount of a substance in the system. In chemical thermo­
dynamics a number of moles is usually used as such a variable.
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From this and (3.13) it is obvious that
S dT  — V dp +  G dtp =  0. (3.157)

This im portant therm odynam ic relation is called the Gibbs- 
Duhem equation and is widely used in chemical thermodynamics.

In the same way we can easily obtain the Gibbs-Duhem equation 
for complex therm odynam ic systems:

S dT — V dp — W  dl  +  Gdy*  =  0. (3.158)

3.2.10. We note that the relations obtained above, namely

( d u )
V dG / v ,S

pr — Ts 
G ’ (3.93)

I —  )\ dG ) p ,  s

1II (3.103)

(M . )
\ dG )v.

pv
T G ’ (3.113)

ds \
dG )u, V G ’ (3.136)

and their analogs for complex systems are, obviously, interesting in 
themselves: they show how the specific values of characteristic 
functions (and entropy) vary w ith the amount of substance in the 
corresponding thermodynamic systems.

3.3 The Massieu-Planck Functions

3.3.1. At one time it was suggested that characteristic functions 
other than U, H, F,  and ® should be introduced. But in thermody­
namic calculations these functions are not used (for reasons considered 
below; see Sec. 3.3.7). Nevertheless, we find it expedient, from the 
pedagogical point of view to discuss these functions at least briefly.

3.3.2. I t  is easy to see tha t the method of introducing characteristic 
functions discussed in Sec. 3.1 was the same: we applied Legendre 
transform ations (3.4), (3.7), and (3.48) to the combined equation of 
the first and second laws of thermodynamics w ritten in form (1.27) 
or (1.30) (for simple or complex systems, respectively).

Somewhat different characteristic functions, usually called the 
Massieu-Planck junctions, can be obtained if we apply the Legendre 
transform ation to Eq. (1.27) in the following form:

dS  = Y dUJ rT d V - (3.159)

Let us consider this relation.
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(1) For a simple system in which U and V are constant (isolated 
system) there follows from (3.159) the well-known equilibrium  con-
dition (3.1a)

dS  =  0.
Whence

\ d U ) v  T
(3.160)

and
( dS \ p 
[ dV )u T • (3.161)

Entropy is a characteristic function if expressed in terms of U 
and V, i.e. by finding the derivative of S  with respect to one of these 
"variables and keeping the other constant we can find the values of T 
and p  and, as a result, the values of S, p, V, T , and U. (The reader 
m ust bear in mind that entropy is not a thermodynamic potential.)

It is easy to see th a t if we combine Eq. (3.4) w ith (1.14) and 
(3.159), we find that

dS =  j r d H - j r d p .  (3.162)

Hence it is clear tha t condition (3.1a)
dS  =  0

w ill also be an equilibrium for such simple systems in which H  and 
p  are constant.

From (3.162) it follows that

( w ) ,  =  T  <3 -163>
.and

( £ ) h = - T -  (3-164)
Hence, entropy is a characteristic function if expressed in terms of
H  and p.

Note tha t since entropy is a characteristic function of variables U 
and V and variables H  and p,  it belongs to the group of Massieu- 
Planck functions.

(2) In accordance with (2.89) we may write

± - d U  =  d { ! L ) - U d { ± - ) ,  (3.165)

which transforms (3.159) to

d [ S - ! L )  =  - U d [ - r )  +  £ rdV . (3.166)
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Hence, for a simple isochoric-isothermal system (V and T constant) 
in equilibrium ,

d ( S  — UIT)  =  0. (3.167)

We introduce the notation

F =  S  — UIT.  (3.168)

If we bear in m ind (3.9), we find that

F =  - F I T .  (3.169)

For an isochoric-isothermal system the function F plays the same
role as the isochoric-isothermal potential F.  The function F is some­
times called the Massieu junction.4 From (3.166) and (3.168) it 
follows that

(■— -)  = - U  (3.170)

and

[ w \ , r  = T -  <3 ' 171>

It is then clear tha t F is a characteristic function if expressed in 
terms of variables V  and UT.

(3) Next, in accordance w ith (2.89) we can write

2 r d V  =  d ( - ^ r ) - V d ( - % r ) .  (3.172)

which transforms (3.166) to

d [ s - ^ r - i - )  =  - u d ( ~ ) - v d ( £ ) .  <3 -173>

It is clear th a t for simple isobaric-isothermal systems (p and T
constant) in equilibrium ,

d ( $ — j r - i r ) = 0 - <3 -174)

Let us introduce the notation

0  =  5 - - - ^ - .  (3.175)

4 F. Massieu was the first (1865) to apply the Legendre transformation to 
thermodynamic equations; he was also the first to formulate the relations known 
at present as the Gibbs-Helmholtz equations (see Sec. 5.2).
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Equation (3.13) yields

(p =  —cD IT.  (3.176)

I t  is obvious tha t for an isobaric-isothermal system the function (J> 
plays the same role as the usual isobaric-isothermal potential. The
function (p is often called the Planck function.

From (3.173) and (3.176) it follows that

and

5 0  \

4 J
(3.177)

l/r
- V . (3.178)

We see tha t the Planck function is a characteristic function if 
expressed in terms of p!T  and 1 IT.

Since, naturally,

d ( " r )  =  T d p J r p d { T )  ’ (3.179)

Eq. (3.173) in accordance with (3.176) can be w ritten in the following 
form:

d® =  - U d [  —  ) - - — dp — p V d ( — ) . (3.180)

Bearing in mind (1.14), we obtain

d<$> =  — Hd  ( f  j 21 dp- (3.181)

From this it follows that

( f i ) =  - I I (3.182)

and
V  T ) p

I ™. )
V dp I \/T

_  V 
T • (3.183)

Therefore, the Planck function is a characteristic function if ex­
pressed in terms of p  and l / T.

(4) Finally, if we substitute (3.172) into (3.159), we get

(3.184)
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From this it is clear that for a simple thermodynamic system in which 
U  and p !T  are constant, in a state of equilibrium ,

d ( S — ^ )  =  0. (3.185)

Let us introduce the notation

(3.186)

or, which is the same.
r  T S - p V  
1 ~  T (3.186a)

From (3.13) it follows that

fc>1 ^ 
©

1II (3.187)

As we can see from (3.184),

( ° L )  = -I  dU ) v / t  T
and

(3.188)

m r ’ -
(3.189)

Therefore, I  is a characteristic function if expressed in terms of U 
and plT.  Indeed, if we find the value of T  with the help of (3.188) 
and know p ! T , we can find p\ if then we find V  with the help of 
(3.189) and knowing p and T, we can find S  from (3.186); etc.

We should like to stress, however, tha t the function I  is of purely 
pedagogical interest. I t  has no practical application due to the 
complex conditions in which the system m ust couple w ith the sur­
roundings (besides U being constant, the condition p l T  =  const 
m ust be fulfilled, too).

3.3.3. Let us introduce the notion of the specific values of the 
Massieu-Planck functions:

F
G ’ (3.190)

O  
G » (3.191)

i I_ 
G •

and

(3.192)
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If we combine these relations w ith (3.168), (3.175), and (3.186), 
we find that

7 =  s — u/T,  (3.193)

(p =  s — pv !T , (3.194)
i =  s — pvlT.  (3.195)

Further, from (3.190), (3.169), and (3.40) it is clear tha t

7 =  —fIT,  (3.196)

and from (3.191), (3.176), and (3.42) tha t

cp =  —cp IT.  (3.197)

Obviously, if the amount of substance in the system rem ains un­
changed (G =  const), (3.160) and (3.161) can be represented in the 
following form:

( S ) . = r  <3-160a>
and

(£ L = t  <3-161a>
(see relations (3.133) and (3.132)); relations (3.166), (3.170), and 
(3.171) can be represented in the form

d j =  — ud ( — ) -j-y-dy, (3.166a)

d_f_

T

=  — u,
V

(3.170a)

(3.171a)

relations (3.172), (3.177), and (3.178) in the form

( i r ) - y d

d<p \

4  = - , ‘’1 / p / T

(3.172a)

(3.177a)

=  — v, (3.178a)
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ancl relations (3.184), (3.188), and (3.189) in the form

di  =  -jr du —  vd ( j - )  , (3.184a)

( 1 L )  = _L
V du Jp/T T ’  
/  di \

(3.188a)

(3.189a>

3.3.4. If we use a method analogous to th a t applied in Sec. 3.2, 
we can easily show tha t

We will recall tha t we have already obtained relation (3.138)

which, together w ith (3.197)

is equivalent to (3.198). We are not surprised, naturally , th a t varia­
tion of these characteristic functions w ith the amount of substance 
in the system is related to the value of the chemical potential cp.

3.3.5. If we consider (3.198), we find th a t the to tal differentials 
of these characteristic functions, expressed in term s of their “own,r 
variables, for the case where the am ount of substance in the system 
varies, have the following form:

iL
T »

dS  =  y  dU  +  j r  dV +  $  dG (3.199)

(this relation is, obviously, equivalent to (3.143)),

dF =  — Ud  ( 4- ) + - ^  +  ? ^ , (3.200)

(3.201)

(3.202)d I = Y d U ~  Vd ( f )  + V dG-

(3.203)

Since, naturally ,
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Eq. (3.201) combined with (1.14) can also be represented in tlie fol­
lowing form:

d 6 = - t f d (  — ) —-£d/>  +  <pdG. (3.204)

3.3.6. We introduce the Planck function and the function /  for 
complex thermodynamic systems along the same lines. Let us write 
Eq. (1.30) in the form

dS =  - y d U  +  -?r dV +  ^r dW,  (3.205)

and consider ,how this equation can be transformed for four types of 
conditions of interaction of a complex system with the surrounding 
medium, the conditions discussed in Sec. 3.3.2 for a simple system.

(1) For a complex system with U, V, and W  constant (an isolated 
system), it is obvious from (3.205) tha t condition (3.1a) is valid 
ju st as for a simple isolated system. From (3.205) it follows that

QJ
| C

o

II (3.206)

( dS \ p  
1 dV )u,  w T ’ (3.207)

( a s \ =  E\ dW )u,  V T * (3.208)

(2) Bearing in mind (3.165), we can transform Eq. (3.205) to

d ( s - i )  =  - f / d  ( - r )  +  y - d r + T ' dw/, (3.209)

or, bearing in mind (3.168),

dF =  - U d [ ± - ) + - £ - d V + \ - d W . (3.210)

Hence, it is clear tha t for a complex system with 1/77, F, and IF 
constant in the equilibrium state

dF =  0. (3.211)

Thus, the expressions for the Massieu function are identical for 
complex and simple systems (3.168)-(3.169) (relations (3.193) and 
(3.196) for mass specific quantities), just as the expressions for the 
isochoric-isothermal potential F,  (3.9) and (3.41), are identical 
for simple and complex systems.
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From (3.210) it also follows that

(3.212)
'  T /  v , w

{ dF \ _  p 
t dV > l / r ,  \v T ’ (3.213)

and

( ** ) = 6  
t dW M/r, V T ■ (3.214)

(3) In accordance w ith (2.89) we may write

^ r d W  =  d (3.215)

Using (3.172) and (3.215), we can transform Eq. (3.209) to 

d [ s - ’L - ^ - ' ^ - )  =  - U d

(3.216)
Let us introduce the notation

=  (3.217)

From (3.59) it is clear tha t

S *  =  — 0)* /r .  (3.218)

In terms of specific quantities these relations can be w ritten thus:

(p* =  s U p V |ll>
T T ¥ (3.217a)

and
(p* =  — (p *IT.  (3.218a)

Bearing in mind (3.218), we can write (3.216) in the form

d ® * =  - U d [ ± ) - V d ( ^ r ) - W d [ ± r ) .  (3.219)

For a complex system with 1/T, p / T , and \ IT  constant (i.e., to put 
it sim ply, T, p,  and |  are kept constant), in the equilibrium state,

=  0 .

5 - 0 4 2 7

(3.220)
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From (3.219) it follows that

/  9 0 * \

9 0 *

and
9 0 *

=  - U ,
T

(3.221)

=  - F ,
p

(3.222)

=  - w . (3.223)
v T ' t / T ,  p /T

(4) Finally, if we transform Eq. (3.205) by employing (3.172) and 
(3.215), we obtain

d ( S — ^ - ~ ^ ) =  —  d U - V d [ - f ) - W d ( j r ) .  (3.224)\  T T

If we introduce the notation

7* =  S pV \w

or, which is the same,
T S - p V - l W  

1 T

then from (3.5a) we see that

/* O *  —  U

(3.225)

(3.225a)

(3.226)

In terms of specific quantities these relations are, naturally, of the 
following form:

=  (3.225b)

i * = -  T* r “ . (3.226a)

and

Using the new notation, we can write (3.224) in the following 
form:

dl* =  - ± r d U - V d { - % r ) - W d  ( 4 - ) .  (3.227)

It is clear that for a complex system with U, p / T , and \ / T  con­
stant, in the equilibrium state,

dl* =  0. (3.228)
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Equation (3.227) implies tha t
/ dl* 
{ dU \ — L

/ p/T, l/T T (3.229)

dl* '

)fu, HT

(3.230)

' - f .

dl* \  = — W.
/U, p/T

(3.231)

/•*w
3.3.7. As pointed out above, the functions F and O are not used 

in thermodynamic calculations (except for some problems involving 
irreversible processes). They were the first characteristic functions 
that Massieu introduced into thermodynamics. Planck in his works
often used the function d>. The modern, so to say, characteristic 
functions (enthalpy and the isochoric-isothermal and isobaric- 
isothermal potentials) came into use considerably later than the 
Massieu-Planck functions.

The characteristic functions U, H, F , and O have an im portant 
advantage over the Massieu-Planck characteristic functions—they 
are thermodynamic potentials. We recall (see Sec. 3.1.3) tha t for 
a quantity  to be a thermodynamic potential the work L* tha t a com­
plex system can perform under given conditions of coupling with 
the surrounding medium is equal to the decrease in the corresponding 
characteristic function (see Eqs. (3.18a) through (3.21a)). The Massieu- 
Planck functions do not possess these properties. This can easily 
be shown.

From Eq. (1.29)
T dS =  dU +  p d V  +  dL* 

it follows th a t for a complex system with U and V constant,
d L * =  T dS.  (3.232)

Next, we write (1.29) in the following form:

d S = ^ r dU+-Er dV-\--}r dL*.  (3.233)

Taking into account (3.165) and (3.168), we transform this equa­
tion to

d F =  ~ U d  ( i - )  H- ~ ^ d V  +  - j rdL* ,  (3.234)

whence for a complex isochoric-isothermal system

dL* =  T dF.
5*

(3.235)
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In the system under consideration T  is constant and, therefore, 
if we use (3.169), we find from (3.235) tha t

dL* =  -  dF. (3.235a)

This result is obvious a priori, since we are speaking of the same 
isochoric-isothermal system for which we earlier obtained rela­
tion (3.20a).

If we combine (3.165) and (3.172), we can transform Eq. (3.233) to 

d (3.236)

or, w ith due regard for (3.175),

=  - U d [ ^ r ) - V d [ - ^ - ) - r - ^ - d L * ,  (3.237)

We see tha t for a complex isobaric-isothermal system,

dL* =  T dfb. (3.238)

Since in this system T is kept constant, it is evident from this 
relation and (3.176) that

dL* =  — dO, (3.238a)

which is an obvious result for isobaric-isothermal systems (see
(3.21a)).

Finally, if we use only (3.172) to transform (3.233), we obtain 

d [ S - - ^ - ) = - ^ d U - V d  ( - f ) + - j r d L * ,  (3-239)

i.e. w ith due regard for (3.186),

d I  =  - ± - d U - V d  \ - L . } + ± - d L * .  (3.240)

Hence, it  follows tha t for a complex system with U and p lT  constant,
dL* =  T dl .  (3.241)

From Eqs. (3.232), (3.235), (3.238), and (3.241) which we have 
just derived it can be seen th a t the work L* is not done at the expense 
of the corresponding characteristic function (as it was in the cases of 
the main characteristic functions discussed in Sec. 3.1; see 
Eqs. (3.18a)-(3.21a)).

Consequently, the Massieu-Planck functions S, F, CD,; and I  do 
not, indeed, possess the properties of a thermodynamic potential.5

b The reader must not be misled by relations (3.235a) and (3.238a): the 
characteristic function for the variables 1 I T  and V  is F  and not F ,  while that 
for the variables i / T  and p l T  is O and not O.
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We will mention the Massieu-Planck functions once more in 
Sec. 5.2.

3.3.8. Concerning the Massieu-Planck functions it is in place to 
make the following remark.

Equation (3.199)

dS =  ± - d U  +  - f d V  +  q>dG,

combined w ith Legendre transform ations (3.165), (3.172), and

?  dG =  d (ft?) -  Gd (3.242)

and w ith due regard for (3.191), which states that

<tG =  o ,
can he w ritten thus:

dS =  d [ ^ r ) - U d  ( y - ) - f d  ( “T " ) - F d ( T - ) + d^ - G d5-
(3.243)

Whence, using (3.175), we obtain

Ud ( - ) + F d ( - ^ ) - G d < p  =  0. (3.244)

This is simply another way of presenting the Gibbs-Duhem equation 
(3.157) discussed above.

3.3.9. To conclude the discussion of the Massieu-Planck characteris­
tic functions we will make one more, purely pedagogical, remark.

The main characteristic functions U, H, F, and O were introduced 
by applying Legendre transform ations to Eq. (3.25)

dU =  T dS  — p dV

for four variables: V and S , p  and S,  V and T , and p  and T. For 
obvious reasons there is no point in discussing two more possible 
pairs, V and p,  and T  and S.

The method of introducing the Massieu-Planck functions was, 
generally, the same—we applied Legendre transform ations to 
Eq. (3.159)

dS = —  d U — j r  dV

for four pairs of variables: V and U, p / T  and U, V and i /T ,  and p/T  
and i /T .  There is no point in discussing pairs V and p/T,  and i / T  
and U. (Sometimes in thermodynamics courses Eq. (3.25) is called 
the combined equation of the first and second laws of thermodynamics 
in terms of energy and Eq. (3.159) the combined equation in 
terms of entropy.) The same classification can be introduced for 
Eqs. (3.62) and (3.205) for complex systems.
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3.4 The Grand Potential and the Kramers Function
3.4.1. Let us consider the combined equation of the first and second 

laws of thermodynamics for systems w ith a variable amount of 
substance (3.144):

T dS =  dU +  p dV — cp dG.

If to this equation we apply Legendre transform ations (3.7)
T dS  =  d (T S ) -  S  dT

and (3.154)
cp dG — d (cpG) — G dep,

and bear in mind that in accordance with (3.42)
cD — cpG,

we obtain
d (U -  TS  -  O) =  -  S dT — p dV — G dcp. (3.245) 

I t is clear that for a simple system with T, V, and cp constant,;
d (U — TS  — (D) =  0. (3.246)

Let us introduce the notation
r =  U — TS  -  <P. (3.247)

If we take (3.9) and (3.13) into account, we have

r =  F -  <D,
or, which is the same,

(3.248)

r =  - p V , (3.249)

The function T is usually called the grand potential. 
By virtue of (3.247) we jean write (3.245) as

dF - —S dl'  — p d V  — G dcp. (3.250)
I t  follows then that

(3.251)

( d V  \ _
V d V  )t,(p P'

and
(3.252)

( f  ) =  G-\ dtp /V, T
(3.253)

From the above relations it is clear that if the grand potential is 
expressed in terms of V, T, and cp, it is a characteristic function.
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Indeed, the values of T and V are given, p  is determined from 
(3.252); if (p is known, having found G from (3.253) we can find (D 
and by the value of S known from (3.251) and the values of p , V, T, 
and wo can determine U\ and so on.

3.4.2. The concept of the grand potential for complex systems is 
introduced in a sim ilar manner. From the combined equation of the 
first and second laws of thermodynamics for a complex system w ith 
a variable amount of substance, (3.145)

T dS =  dU  +  p dV +  t  dW  -  cp* dG,

using Legendre transform ations (3.7) and
cp* dG =  d (cp*G) —  G dtp* 

and taking into account (3.42a), we obtain

(3.154a)

dT* =  — S dT — p dV — I d W  -  G dy*,
where

(3.254)

r* =  U — TS — (D*,
or, which is the same,

(3.255)

r* =  F —  O*
and

(3.256)

r* =  -  pV -  i w . (3.257)
From (3.254) it is clear that for a complex system in which T, V, 

W,  and cp* are constant, in a state of equilibrium ,
dr* =  0. (3.258)

The function T* is the grand potential for a complex system.
From (3.254) we see that

( i r U ^ = - f -  <3 -25fl>

( w h . v .  * .=  - « '  (3.260)

( ■ v r h .  - S ' (3 -261)
and

/ r)T* \
(3 -262)

3.4.3. The characteristic function F* has the properties of a ther­
modynamic potential. Indeed, if we take into account Eq. (1.7) 
we can write (3.145) as

T dS =  dU +  p dV  +  dL* —  cp* dG, (3.263)
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and using (3.7) and (3.154a), we can transform it to
dT* =  — S d T — p d V  — G dq* — dL*.  (3.264)

Hence, it follows tha t for a complex thermodynamic system in 
which T , V, and cp* are constant we have

dL* =  -  dT*, (3.265)

i.e. under given conditions of interaction with the surrounding 
medium a system of th is type performs work L* a t the expense of 
the characteristic function T*.

I t is interesting to note that while in the case of the common ther­
modynamic potentials (H  and O), under appropriate conditions of 
coupling with the surroundings a complex system performs work at 
the expense of the corresponding potential of a simple system: 
dL * =  — dH  and dL* =  — ckt> (this is seen from Eqs. (3.19a) and 
(3.21a), in the given case the work L* is performed at the expense 
not of the “simple” grand potential T but of the complex grand poten­
tia l T*. This is not surprising since in Sec. 3.1.3 for a complex sys­
tem  w ith a constant amount of substance we used Eq. (1.29), while 
here we use Eq. (3.145) containing besides L* the quantity  cp*, due 
to which in (3.264) and (3.265) there appears T* instead of T. At the 
same time it is obvious from (3.157) that T is not a thermodynamic 
potential (since for the complex system under consideration dL* ^ = 
¥=dT).

3.4.4. The grand potential is widely used in statistical therm ody­
namics for calculating the grand canonical ensemble. In classical 
thermodynamics the grand potential is not used.

3.4.5. If we write Eq. (3.144) in the form

d S ^ - j r  dU - T - ^ d V - ^ r d G  (3.266)

and employ Legendre transformations (3.165)

- L d U  =  d ( - % - ) - U d ( ± ) ,
and

■f-dG =  d (3.267)

then, using (3.42), we can write (3.266) in the following form:

d ( S - i + - 2 - )  =  - r a ( J - )  +  ^ IiF  +  G d ( X ) .  (3.268)

I t  is clear tha t for a simple system in which T , F, and cp IT  are con­
stant (and since T is constant, cp is constant, too),

(3.269)
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We introduce the notation
^  77 d )
r  =  S — +  • (3.270)

If we combine (3.247) and this relation, we see that

r =  -  T/T. (3.271)

The quantity  T is usually called the Kramers function.
Bearing in mind (3.270), we can write Eq. (3.268) in the fol­

lowing form:

or, using (3.197),

f — )l. d V  }

and
dT

) )  +  - p F + G d ( - f - ) , (3.272)

( 4 ) + T - d V - G d y . (3.273)

, that

"  a . (3.274)
/V, (p/T

) -  P / 1 /T, <p/T T ’ (3.275)

: )  - g . (3.276)

T  '  i / T ,  V

From the above relations it follows tha t the Kramers function is 
a characteristic function if expressed in terms of V , i /T ,  and cp/TL 

In the same way we can introduce the Kramers function for com­
plex systems. If we write Eq. (3.145) in the form

dS =  -±rdU-] - ^ rdV  +  ^ r d W - ^ - d G  (3.277)

and apply Legendre transform ations (3.165) and

* L d G  =  d [ ^ - ) - G d { ~ f ^ ) ,  (3.278)

using (3.42a), we find from (3.277) tha t

d f * = - U d  ( 4 - ) + - y d V + ^ r d W  +  Gd ( - ^ - ) ,  (3.279)

or, bearing in mind (3.218a)

dT* =  — Ud (4") - \ - - j rdV -T —r dW — G d y * . (3.280)
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Here
~  TJ <D*

=  (3.281)

or, according to (3.22G),

f*  =  — T*/T.  (3.282)
It is obvious that for a complex system with T, V, W,  and cp* 

■constant, in the equilibrium  state,

- 0.
From (3.279) we sec that

r )
T ' V. W\ ( f * / T

( dr* ) __ p
I dV )i /T,W,<[*/T T ’

and
1 / 7 ’ , V,  <f * / T T J

51'*
cp*

~T

=  G.
1 / 7 ’, V ,  U

(3.283)

(3.284)

(3.285)

(3.286)

(3.287)

We can easily show that the Kramers function is not a therm odynam ­
ic potential. Substitu ting EdlF in Eq. (3.279) w ith the help of (1.7), 
we get

d r * =  - U d  {JL^  +  ^ d V  +  G d ^ ^  +  Y - d L * .  (3.288)

I t  is obvious th a t for the system under consideration, w ith V , T,  
and cp* constant,

dL* =  T dF*. (3.289)

Since in th is system T is constant, using (3.282) we can write 
(3.289) in the following form:

dL* =  — d r* , (3.289a)
which is obvious a priori.

We see tha t the work L* is performed not at the expense of the
corresponding function T*; therefore, r*  does not have the proper­
ties of a therm odynam ic potential. I t is obvious th a t the Kram ers
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function T is related to the grand potential F in the same manner as 
the Massieu-Planck functions are related to the m ain characteristic 
functions (U, H , F, and d)). The Kramers function is not widely 
applied in thermodynamic calculations.

3.5 Ollier Characteristic Functions
3.5.1. As we saw in Sec. 3.4.1, the grand potential F was intro­

duced by using in Eq. (3.144)
T dS =  dU +  p dV  — cp dG

Legendre transformations (3.7) for the quantity  T dS  and (3.154) for 
<p dG. Earlier, in Sec. 3.2.9, we saw that if we apply the Legendre 
transform ation (3.4) together with (3.7) and (3.154) to p dV , then 
Eq. (3.144) is transformed into the Gibbs-Duhem equation.

Thus, in the first case, in Eq. (3.144) we used the transform ation 
for the quantity  T dS  in addition to transform ation (3.154) for 
cp dG, while in the second case we used transform ations botli for 
T dS and p dV.  In both cases, when considering Eq. (3.144) the 
characteristic feature is the application of transform ation (3.154) 
to cp dG.

We can also easily see th a t if we must use transform ation (3.154), 
there are two more ways in which we can handle Eq. (3.144): (1) using 
neither transform ation (3.7) nor transform ation (3.4), and (2) 
using only transform ation (3.4). Treating Eq. (3.144) along the 
same lines results in two more interesting characteristic functions.

3.5.2. Let us perform the required transform ations.
(1) If in Eq. (3.144)

T dS  =  dU +  p dV  — cp dG

we substitute the quantity  cp dG with the help of (3.154)

cp dG — d (qG) — G <2cp

and take into account (3.42), we obtain

d (U — O) =  T dS  — p dV  — G dcp. (3.290)

It is clear tha t for a simple system in which S , V, and cp are constant, 
in the equilibrium  state,

d (U -  (D) =  0. (3.291)

Let us introduce the notation
n  =  U — O. (3.292)

This combined with (3.13) yields
n =  TS  — pV. (3.293)
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Using this notation, we can write (3.290) in the following form:

dU - T dS — p dV — G dq>. (3.294)

Hence it is clear that
( dn ) — x  
\ dS )v ,  <p ’ (3.295)

1( dU \
[ dV / S, <p P' (3.296)

and

I
f ^  1 _ Q
I <?cp )s, V (3.297)

From these relations it follows th a t 11 is a characteristic function 
if expressed in terms of S, V, and tp.

In the same way a sim ilar characteristic function can be introduced 
for a complex system: transforming Eq. (3.145) w ith the help of 
(3.154a), we obtain

dU* =  T dS — p dV — t d W  — G dcp*: (3.298)
where

n *  =  U — o * , (3.299)

or, which is the same,
n* =  t s  — p v  — t i v . (3.300)

From 
W,  and

(3.298) it follows tha t for a complex system in 
cp* are constant, in the equilibrium  state,

which S , V,

dU* -  0. (3.301)
From (3.298) it follows tha t

( an* ) T V dS ) V, w, <p* ’ (3.302)

/ an* a _
I dV )s,  W, <P*“  P' (3.303)

and
-  - tV dW Is,  V, v* (3.304)

/ an* \ _  q 
\ acp* Is,  v, w (3.305)

I t  is easy to show tha t the characteristic function n*  is a therm o­
dynamic potential: if we substitute in (3.298) the quantity  E d W  
using (1.7), we obtain

dn* =  T dS — p dV — G dy* — dL*. (3.306)
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Hence, it is obvious tha t for a complex thermodynamic system in which 
S,  F, and <p* are constant

dL* =  — dU*,  (3.307)

i.e. under the given conditions of interaction with the surrounding 
medium the work L* th a t such a system can perform is only at the 
expense of the characteristic function II*. At the same time it is 
obvious from (3.307) th a t II is not a thermodynamic potential 
(since dL* =̂= —dll).

Note th a t the functions II and II* considered here are uniquely 
related to the functions I  and I* introduced earlier in Sec. 3.3. 
Indeed, comparing relations (3.186a) and (3.293), we see that

n  =  77, (3.308)

while comparing relations (3.225a) and (3.300) we see tha t
n *  =  TI*.  (3.309)

(2) If in (3.144) we substitute the quantity  cp dG using (3.154)
and the quantity  p dV using (3.4) and take into account (3.42), we
obtain

d (U +  p V  — cl)) =  T dS +  V dp — G dip. (3.310)

It is easy to see th a t for a simple system in which S , p, and <p 
are constant, in the equilibrium  state,

d (U +  p V  — (D) =  0. (3.311)
We introduce the notation

A  =  U +  p V  -  CD, (3.312)
or, using (3.13),

A =  TS.  (3.313)

Using this notation, we can write (3.310) in the form
dA =  T dS  +  V dp — G dcp. (3.314)

Hence, it is obvious th a t

( i r l „ = - r - <3 -315>

(-£ ? -) ,. <3 -316)
and

( ^ ) s , p = - G- <3 -317>

Thus, A is a characteristic function if expressed in terms of S , p y 
and <p.
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For a complex system the situation is the same: if we transform 
Eq. (3.145) using (3.4), (3:48), and (3.154a), we find that
d (j j  _|_ pV  - f  %W — CD*) =  T dS  - f  V dp - f  W  dl  — G dtp*. (3.318)

Combining this with (3.59), we see that
U +  pV  +  \ W  — cb* =  TS  (3.319)

and, hence, bearing in mind (3.313), we can write (3.318) in the 
form

dA = T dS - f  V dp +  W  dl  -  G dcp*. (3.320)

It is clear that for a complex system in which S , p, 
constant, in the equilibrium state,

S, and cp* are
> II O (3.321)

From (3.320) it is obvious that

( — I . . = T ,V oS j p ,  s> cp*
(3.322)

( dA ) - V (3.323)

I ^  ) -  IV,V dl ) S, p, <p*
(3.324)

and
( 1 _ n
I dcp* )s, p, | (3.325)

It is interesting to note that the characteristic function A is no t 
a thermodynamic potential. Indeed, if we substitute in Eq. (3.145) 
the quantity |  dW  using (1.7), we can write (3.145) in the following- 
form:

T dS =  dU +  p dV — dL* — cp* dG. (3.326)

Using Legendre transformations (3.4) and (3.154a), we obtain

d (U +  pV  -  <D*) =  T dS +  V dp — G d<p* — dL*. (3.327)

Hence it is clear that for a complex thermodynamic system in which 
5, p, and cp* arc constant

dL* =  — d (U +  p V  — O*). (3.328)

But from (3.59) it is obvious that

U +  pV  — <J>* =  TS  — \W ,  (3.329)
or, using (3.313),

U +  pV  — ®* =  A — %W. (3.330)
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If we combine th is relation w ith Eq. (3.328), we find th a t
dL* =  — dA  +  d ( l W ) .  (3.331)

Hence it is clear th a t under the given conditions of interaction 
with the surroundings, the work L* performed by a complex system 
is not done at the expense of the characteristic function A. Therefore, 
the function A does not have the properties of a therm odynam ic po­
ten tial. As seen from (3.331), the function A — \ W  =  TS  — \ W  
is a therm odynam ic potential for th is system; it is also a character­
istic function.

This can easily bo shown in the following way. If to transform 
Eq. (3.145) we use only (3.4) and (3.154a) and we do not substitute 
t lV  by means of (3.48), instead of (3.318) wc have

d (U +  p V  — <D*) =  T dS  +  V dp — I d W  — G dip*, (3.332>

or, using (3.329),
d (TS — \W )  =  T dS +  V dp — I d W  — G dip*. (3.333)

Whence, it is clear th a t for a system in which S, p, W,  and cp* 
are constant,6 in the equilibrium  state,

d (TS  — %W) =  0. (3.334)
If wc introduce the notation

E =  TS  ~  hW,  (3.335)’
we can write (3.333) in the form

dZ  =  T dS  - f  V dp — |  d W  — G dip*. (3.336)
From this it follows that

( dE I dS ) = T ' }p,  W,  <p* (3.337)
' dE ' 
. dp .) = v .Is,  IV, ({*

(3.338)
dE ' 
dW ,)s, p, <p*“ (3.339)

dE
dip* ) = — G.1 S, p , W (3.340)

The above relations show tha t the function £  is indeed a character­
istic function if expressed in terms of S, p,  W,  and cp*. Obviously,

6 The peculiarity of these conditions of interaction between the system and 
its surroundings consists in that along with the conditions that S and cp* be 
kept constant, in relation to one type of work (the work of expansion), the value 
of the generalized force, pressure p,  remains constant, while in relation to another 
type of work the value of the generalized coordinate W remains constant.
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if we substitute |  dW  using (1.7) and (3.329) in Eq. (3.336), we can 
transform the la tte r equation to

dE =  T dS  +  V dp —  G dec* —  dL* . (3.341)

I t  is clear th a t for a therm odynam ic system in which S , p,  and <p* 
are constant, in the equilibrium  state,

dL* =  -  d E , (3.342)

i.e. the system can perform work, L * , at the expense of the character­
istic function E. Consequently, the function E is a therm odynam ic 
potential. N aturally , (3.342) is equivalent to (3.331).

3.5.3. Let us now consider Eq. (3.144) w ritten  in the form (3.266):

dS =  -^-dU +  j r d V - ^ r d G .

If we use the Legendre transform ation (3.267)

and Eq. (3.42), we can write Eq. (3.266) in the following form:

dS  =  - Y d U  +  -2rdV +  G d ( - % - ) - d  (3.343)

or, using (3.197),

dS  =  ^ r d U  +  j r d V - G d y - d ( - ^ ) .  (3.344)

This equation can be transformed w ith the help of (3.165)

± d U  =  d ( - ~ - ) - U d (-±-)

and (3.172)

-% rdV  =  d [ * f ) - V d [ - f ) .

There are four ways in which we can transform Eq. (3.343): using 
both (3.165) and (3.172), using only (3.165), using only (3.172), and 
using neither (3.165) nor (3.172).

I t  is easy to show th a t the first case results in the Gibbs-Duhem 
equation in the form (3.344).

The second yields Eq. (3.268), which we already know (on the 
basis of the equation that introduced the Kramers function (3.270)).

If we consider the two rem aining cases, we obtain interesting 
results.
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(1) Substitu ting in (3.343) the quantity  (pl T ) dV by means of the 
Legendre transform ation (3.172), we obtain

d ( S -  -y- +  T-) = j r d U - V d  ( - f  ) +Gd ( - f )  . (3.345)

We see tha t for a simple system in which U, plT,  and q /T  are con­
stant, in the equilibrium  state,

d ( s -

We introduce the notation

From (3.347) if follows that

and

f — 1I dU ) 

' dU

/  dU
9

■ f + - f ) = o . (3.346)

we see that
T <D _  U
I | rp jt - (3.347)

1 +
 

>s
| © (3.348)

? =  UlT. (3.349)

l  the form

V i { - T ) + G d { - f ) ,

S

(3.350)

_  1 
P I T ,  T ’

(3.351)

\  - - V . (3.352)

Ju,  <p/r

- )
(3.353)

/ U ,  p / T

which show th a t the function U is a characteristic function if expres­
sed in terms of U, p/T,  and (p/T.

In the same way, for a complex system Eq. (3.277)

dS =  4 ~ d U  +  ± r d V  +  - | -  dW '
c p * dG,

6 - 0 4 2 7
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which we combine w ith (3.278) and (3.42a) and write as

dS =  ^ d U  +  f d V  +  j r d W - d ( - ^ )  +  Gd ( - S 1 ) , (3.354)

can be transformed, via (3.172) and (3.215), to

d U * = ± r d U - V d ( ^ r ) . - W d  (-|r)-f Gd (^ ) .
Here

77* =  Q _PZ____VN_ , iH l^  r£ r£ "~j yt •

From (3.59) we find tha t

(3.355)

(3.356)

U* =  U. (3.357)

We see th a t for a complex system in which U, p l T , \ IT.  and <p*IT 
are constant, in the equilibrium  state,

dU =  0. (3.358)
From (3.355) lit is obvious that

and

/ dU 
{ dU ) =  - i ,

'p/T, \ /T, <p*T T ’ 

)

(3.359)

( eu
(3.360)

,̂  T /  U, |/T, cp */T
dU N

| =  — W, (3.361)
a-LT ,'U, p/T, cp*/T

=  e.
U ,  p / T ,  l / T

(3.362)

It is easy to see tha t the function U does not have the propertieg 
of a therm odynam ic potential. Indeed, if we write (3.215), bearins 
in mind (1.7), in the form

-  Wd  (■-jr ) =  ■— dL* -  d ( ■ ) ,  (3.363)

then, using th is relation, we can transform (3.355) to 

d U = ^ r d U - V d ( f ) + G d  {-— ) ~ d  ( ^ ~ )  + “j r  dL*. (3.364)
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I t  is clear tha t for a system in which U, p /T,  and cp*/T  are constant,

dL* =  T [ d U  +  d { ^ ~ y ^ ,  (3.365)

or, in accordance w ith (3.349),

dL* — Td u+iw (3.366)

Therefore, the work L* is not done at the expense of the character-
IN' IN'

istic function U ; hence, U is not a thermodynamic potential.
(2) Let us now consider Eq. (3.343) w ithout applying Legendre 

transform ations (3.165) and (3.172). Equation (3.343) can be w rit­
ten thus:

d ( $  +  - ^ )  =  - |- d t f  +  - f -d F  +  G d ( - ^ ) .  (3.367)

We see th a t for a simple system in which U, V , and qpIT  are constant, 
in the equilibrium  state,

d (S +  <DIT) =  0. (3.368)

From (3.15) it follows th a t

S  +  <D IT =  HIT.  (3.369)

Let us introduce the notation

H  =  S  +  <D/7\ (3.370)
Obviously,

H  =  HIT.  (3.371)

Using this notation, we can write (3.367) in the form 

dH =  - Y d U  +  ± - d V + G d { 2 r ) ,

whence

and

f dH 1I dU 1V ,  <P/T

dH \I
d v  ) U,  <pIT

/  dH \

( • i J u , v

p
T

=  G.

(3.372)

(3.373)

(3.374)

6*

(3.375)
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From these relations it follows that H  is a characteristic function if 
expressed in terms of U, F, and y/T.

For a complex system we can write Eq. (3.354) in the following
way:

dH* = y - c l U  +  - f d V  +  - l r d W  +  G d ( £ - ) ,  (3.376)

where ^
H* =  S +  d>*IT. (3.377)

Using (3.60), we find tha t

H* =  II* IT.  (3.378)

From (3.376) it follows tha t for a complex system in which U, V , 
W,  and q>*/T are constant, in the equilibrium  state,

dH* =  0.

From (3.376) it also follows that

( dH* \
V dU Jv ,  W, if*IT

( dH* \
( dV )u,  W,  cf*/T

dH* \
{

1*9-C^>

and

(3.379)

(3.380)

(3.381)

(3.382)

(3.383)

Hence, the function II* is a characteristic function if expressed in 
terms of U, V, W,  and tp*/7\

Next, using (1.7), we can write Eq. (3.376) in the form

dH* =  —  dU +  - f  dV +  Gd ( ■ )  +  —  d L * . (3.384)

We see that for a system in which U, V , and (p*iT  are constant,

dL* — T dH*,  (3.385)

i.e. the work L* is not done at the expense of the characteristic
function H*  and, hence, II* is not a therm odynam ic potential.

The characteristic functions discussed in th is section are interest­
ing, first of all, from the pedagogical point of view, since they
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constitute the group of characteristic functions for thermodynamic 
systems w ith variable amount of substance.

3.5.4. In conclusion let us consider one more problem. We have 
shown above th a t if we substitu te in Eq. (3.144) the quantities 
T dS,  p dV,  |  d W , and cp* dG using Legendre transform ations (3.7),
(3.4), (3.48), and (3.154a), we obtain the Gibbs-Duhem equation for 
complex systems (3.158). S im ilarly , if we substitu te  in Eq. (3.277) 
the quantities (1 IT) dU,  (pIT) dV,  (£ /T) dW,  and (y*/T) dG using 
Legendre transform ations (3.165), (3.172). (3.215), and (3.304), 
we obtain the Gibbs-Duhem equation for complex systems (3.244). 
These Gibbs-Duhem equations show that for the group of variab­
les T, p , £ and <p* and, likewise, for the group of variables 1 IT, pIT , 
%,!T, and y*/ T  there are no characteristic functions. However, it is 
interesting to discuss what amount of work L* can be performed by 
a complex system under the following conditions of interaction w ith 
the surroundings: T, p,  and (p* are constant; and \ /T,  p/T,  and (p*/T 
are constant.

If we use (1.7) and write Eq. (3.145) in the form
T dS =  dU  +  p dV  -  cp* dG -f  dL* , (3.386)

then using Legendre transform ations (3.4), (3.7), and (3.154a), we 
can write this equation in the following form:
d (TS  -  U — P V +  ® * )  =  S dT — V dp G dtp* +  dL*,  (3.387)
or, w ith due regard for (3.59),

d (£TE) =  S dT  —  V dp +  G dcp* -f  dL*.  (3.388)

Hence, we see th a t for a complex system in which T , p,  and <p* 
are constant,

dL* =  d (IW).  (3.389)

Sim ilarly, if we take into account (1.7) and write (3.277) in the 
form

dS =  -J- dU +  -f- dV -  dG + —  dL-*. (3.390)

using Legendre transform ations (3.165), (3.172), and (3.278), we can 
reduce (3.390) to

— - r : + iir )  =  - CM( - r )

- V d [ - ^ )  +  G d [ ^ - )  +  ^ r d L *  (3.391)

or, w ith due regard for (3.59),

d ( ^ - ) = - U d ( ± - ) - V d ( - l r ) + G d [ - ^ - ) + ± - dL*.  (3.392)
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Therefore, for a complex system in which HT,  p/T,  and cp*/T  are 
constant,

dL* =  T d { ^ - ]  (3.393)

or, since T  is constant,

dL* =  d ( l W ) ,  (3.394)

which coincides with (3.389). This is obvious a priori , since the 
conditions of interaction of the two systems w ith the surroundings 
are the same.

Table 3.1 gives the characteristic functions discussed in this 
chapter.

TABLE 3.1
Simple systems Complex systems

Variables Characteristicfunction Variables Characteristicfunction

5, V
Constant amount of substance 

U S, V, W U
s , p H =  U + p V S, P, I H* =  U +  p V +  IW
T, V F =  U — TS T, V, W F =  U — TS
T, P cD = U  +  pV— TS T, P, I cp * =  U +  pV +

U, V S U, V, W
+  Z,W — TS

S
u,  PIT I  =  (TS — PV)/T U, PIT, IIT I* =  (TS — pV

1 IT, V F — ~ F / T l/T, V, W
- \ W ) ! T  

F =  —FIT
UT, p/T <D= — (p/T 1 IT, p/T, l/T 2> = —<D */T

Variable amount of substance
S, V, cp Il =  TS — pV S, V, W, cp* Yl* =  TS — pV

- \ w
S, p, cp A =  TS S, P, I, cp* A = T S
T V, (p 
T, P, cp

r = —Pv
/*S»/

T, V, W, cp* 
T, P, I, <P*

r* = —p v —i w

U, V, cp IT H =  H/T U, V, W, cp*/T H* = H*/T
U, p/T, cp IT 'll — V IT U, p/T, l/T, cp*/T U =  U/T
i/r, v, cp IT 
UT, p/T, cp IT

f= — t /t i/T, v,  w ,  <p*/r 1 IT, PIT, l lT,y*IT
r* = — r*/r
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TABLE 3.2

Interaction between complex thermodynamic system 
and surroundings

Char­
acter­
istic
func­
tion

Work of system in 
equilibrium

Constant amount of substance
S =  const, V =  const U dL* =  —dU
S =  const, p =  const H dL* =  — dH
7’ =  const, V =  const F dL* =  —dF
T =  const, p =  const dL* =  —
U =  const, V =  const S dL* =  T dS
U =  const, p/T = co n st I dL* =  T d l

1/T =  const, V =  const F dL* =  —dF
1/T =  const, p/T =  const 5 d L * = —d

Variable amount of substance
S =  const, V = const, q)* = const n dL* = — dU*
S =  const, p — const. q>* = co n st A dL* = - d { T S - l W )
T =  const, F =  const. <p* = const r dL* = — dT*
T = const, p = const, <p* = const dL* = d(lW)
U = const, V =  const, (f*/T =  const H dL* = T dH*
U = const, p/T =  const, qp*/7’ = const u dL* = Td ( U +  lW)/T

1/T = const, F =  const, y*/T =  const r dL* = —dT*
l / r  = const, p/T =  const, <p*/T =  const dL* = d( lW)

The relations defining the work L* th a t a specific system can 
perform in the equilibrium  state are presented in Table 3.2. These 
are given for different conditions of interaction between the complex 
thermodynamic system and its surroundings. We recall th a t if the 
work L* is done at the expense of a characteristic function N  
(i.e. dL* =  —dN),  this function is a thermodynamic potential; 
otherwise it  is not.



4 The Maxwell Equations

4.1 Simple Systems
4.1.1. The most im portant tools of thermodynamics are the equa­

tions derived by J. C. Maxwell. In wrhat follows we will widely use 
these equations.

The Maxwell equations can be obtained in the following way. 
The reader will recall (see Chap. 2) that if a differential of a function 
z =  f  (x, y) is written in form (2.63)

dz =  M  dx +  N  dy

and it is known that the differential of this function is to tal, the 
relation (2.30) holds:

/ d M  \ __ / d N  \
\ dy j  x \ dx ) y*

(1) If we compare Eq. (3.25a)
du =  T ds — p dv

with (2.63), we find that M  =  T, N  =  — p, x =  s, and y =  v. 
Hence, from (2.30) we obtain

<“ >
(2) If we compare Eq. (3.28a)

dh =  T ds +  v dp

with (2.63), we see that M  =  T, N  =  v, x  =  s, and y =  p.  W ith 
this in mind, from (2.30) we find that

(£ ) .= (£ ) ,-  <4-2>
(3) If we compare (3.31a)

df =  — pdv  — s dT

with (2.63), we find that M  =  — p, N  =  — s, x =  v, and y =  T. 
Hence, from (2.30) we obtain

(4.3)
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(4) Finally, if we compare (3.34a)
dq> =  vdp — sdT

with (2.63), we find tha t M  ~  v, N  =  — s, x =  p,  and y =  T. 
From (2.30) it follows that

( £ ) , — (£ ) ,•  <«>
Relations (4.1)-(4.4) are called the Maxwell equations.
4.1.2. From (2.1) it is obvious th a t Eqs. (4.1) through (4.4) may 

be w ritten  in “inverted” form:

' dv \ 
. dT j (4.1a)

( dp 
[ dT

(4.2a)

/ dT 
\  dp ■ ) .= ( - 5 - L *

(4.3a)

dT \ 
dv )

(4.4a)

4.1.3. Equations (4.1) through (4.4a) are w ritten for ,the specific 
(per unit mass) values, v and s, bu t the same can be derived for the 
to tal quantities, V and S,  relating to the entire thermodynamic system:

II 1- m * ’ (4.1b)

II

( - & ) , .
(4.2b)

II

Bit, f— i\av h ’ (4.3b)

dV \ _  
dT ) p I dp I t '

(4.4b)

the inverse relations w ill also have this form.
4.1.4. From what we have said it follows tha t the Maxwell equa­

tions can be considered a particu lar case of the general relation (2.30) 
given for therm odynam ic quantities.

4.1.5 N aturally , we may ask w hat relation we w ill obtain if, 
together w ith Eqs. (3.25a), (3.28a), (3.31a), and (3.34a), we consider 
Eq. (1.27a). Let us write th is equation in the form

ds =  -jr du +  j -  dv (4.5)
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and compare it w ith (2.63). We find tha t M =  1/T, N  = plT,  x  =  u, 
and y =  v. Substituting these values into (2.30), we get

(£ ) .= * (# ) .- ' (£ ) .■  <«>
Since in accordance with (2.67)

and in accordance with (2.6)

we obtain from (4.7)

( £ ) t = t  f w l - r -  <4-9>

This relation gives the variation in the internal energy w ith the 
specific volume on an isotherm. I t  is used in various thermodynamic 
calculations, bu t the Maxwell equations are far more significant 
and universal; moreover, relation (4.9) may be easily derived from 
one of the Maxwell equations (see Sec. 5.1).

4.1.6. Sometimes the following method of deriving the Maxwell 
equations is given. Let us denote by x  and y two variables tha t imply 
any pair from the four quantities p, v, T, and s. From Eq. (3.25a)

du ■ T ds —- pdv
it follows that

( % r ) , = T V  9 X  ) y - p m . (4.10)

and

( S ) . = r  (
' ds \ 
k dy j x (4.11)

Differentiating the first of these relations w ith respect to y w ith x  
constant, and the second w ith respect to x  with y constant, we ob­
tain, respectively.

d2u ( dT \ i ds
) A T)y

d2s f  dp \ ( dv \ d2v
(4 .12)dx dy I dy j . : (~d7 dx dy A  d y ) :e I dx )y T dx dy

d2u i d T \ ( 9S )1 4- T d2s ( d p \ ( d v ) . d2v 04 13^
dy dx V dx ) 9A d y  )1 “T L

X dy dx V dx )y V dy )x P d y d x ’ iO)
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E quating the right-liand sides of these relations we obtain

( 3T \ / ds \ ( d v _ )  = ( j ¥ _ )  ( J M  _  ( ^  \ /  dv %
\  dy ) x  \  dx ) y  V dy l x  V dx ) y V dx ) y dy ) x  I dx ) y V dy 'x '

(4.14)

If we substitu te p, v , T,  and s for x  and y, we see th a t four vari­
ants of such a substitu tion are possible:

(1) x =  v, y =  s\ (3) * =  v, y =  T\
(2) x =  p, y =  s\ (4) x  =  p,  y =  T

(since Eq. (4.14) is symmetric w ith respect to x  and y, substituting 
x  — v, y =  s for x  =  s, y =  v, and so on does not yield a new result). 

Substitu ting x =  u and y =  s into (4.14), we obtain
( dT \  / ds \ __ ( dp_ \  _ ( d T _ )  ( d s _ )  )  /  dv_ \
V ds )v  V dv )s V ds Jv V dv ) s \ dv ) s V ds )v  I dv ) 3 V ds ) v *

(4.15)

Since, obviously, (ds/dv)s =  0 and (dv/ds)v =  0 but (dv!dv)t =  1 and 
(dsfds)v =  1, from (4.15) it follows tha t

which is the Maxwell equation (4.1).
Sim ilarly, the second, th ird , and fourth variants of the substitution 

yield, respectively, the Maxwell equations (4.2), (4.3), and (4.4).
This method of deriving the Maxwell equations is, perhaps, more 

elegant than the one considered in Sec. 4.1.1, bu t the la tte r is 
clearer.

4.2 Complex Systems

4.2.1. If a therm odynam ic system performs work other than 
work of expansion, the Maxwell equations are formulated in the 
following way.

(1) From the combined equation of the first and second laws of 
thermodynamics for such systems, (1.30a), it follows tha t (see 
Eq. (3.62a))

du — T ds — pdv  — £ dw.

We note th a t |  is a generalized force (save for pressure p) and w is 
a generalized coordinate (save for specific volume v).

For the case w ith v constant we obtain

du =  T ds — £ dw. (4.16)
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W ith the aid of the method discussed in Sec. 4.1.1 and Eq. (2.30) 
we find tha t

( i ! )  .
V dw f s, v  >. ds /w, v

d$ (4.17)

Sim ilarly, for the case with w constant we find from (3.62a) and 
(2.30) that

( — ) (4.18)I dv ) St w V ds ) v< w K ’

(2) Equation (3.66a)
dh* =  T ds +  vdp -f- wd\,

where h* is the enthalpy of a complex system defined by rela­
tion (1.15a)

h* = u +  pv  +  lw,

for the case with p  constant can be w ritten thus:

dh* T ds -f- wd\.  (4.19)

In accordance with (2.30) we find from this relation that
dT( 2 L '1

\  d \  ) s, v  V ds ) I, p
(4.20)

Sim ilarly, for the case with |  constant we find from (3.66a) and 
(2.30) that

'p . ;
f i L i  = f i2 .)
V dp ) S, I V ds

(3) Equation (3.70a)

df =  — pdv — |dw — sdT,

(4.21)

where /  is the free energy of a complex system defined by the general 
relation (3.41), for the case w ith v constant is

dj  =  — \dw — sdT. (4.22)

In accordance w ith (2.30) we find from (4.22) that

<4-23>

Sim ilarly, for the case with w constant we find from (3.70a) and 
(2.30) that

(■gr)  = ( - £ )V dl >V, w V dv IT, w
(4.24)
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(4) Finally, Eq. (3.74a)

dtp* =  vdp +  wdt  — sdT

for the case w ith p  constant is w ritten  thus:

dtp* =  wd'h, — sdT.  (4.25)

Hence, in accordance w ith (2.30), we have

Sim ilarly, for the case w ith c constant we find from (3.74a) and 
(2.30) that

<427>
These are the Maxwell equations for complex systems. We see th a t 

Eqs. (4.18), (4.21), (4.24), and (4.27) are sim ilar to Eqs. (4.1) 
through (4.4), the only difference being th a t the partial derivatives 
in (4.18) and (4.24) are calculated w ith w kept constant, and those 
in (4.21) and (4.27) with |  constant.

4.2.2. N aturally , the Maxwell equations can also be w ritten in 
an inverted form:

m , . - - I —  )\ d \  ) w, v  ’ (4.17a)

dv \ _
dT I s, w ( # - )  -\  dp / v,  w

(4.18a)

( # ) , , =  (
ds t
dw ) i, p ’ (4.20a)

( # ) . . « = (
ds \
dv }p, I ’ (4.21a)

( f h . H 4 p )  ,. ds I t, v (4.23a)

( £ ) . . . = (
dv \
ds I t ,  w ’ (4.24a)

dT \ _  
dw ) i, p (*L)

I ds Jt,  p ‘ (4.26a)

dT \
dv )p, l ~ (— )\ ds ) t ,  I (4.27a)

4.2.3. The Maxwell equations for complex systems obtained in 
this section, just as Eqs. (4.1b) through (4.4b), can be w ritten for
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the total values of V, W,  and S  which refer to the entire thermody­
namic system:

and, sim ilarly ,

dT \ _  
dW j s, V \ dS ) w, v ’ (4.17b)

dT \
uV )s, W

(IE. )
\ dS lv,  vv ’ (4.18b)

( f ) , , =  (
dW \
dS J l . p ’ (4.20b)

( • £ ) . . , = ( ■
dV \
dS )p, g’ (4.21b)

( t L , v = (
dS \
dW I t , v ’ (4.23b)

( D v . w H
' dS \ 

dV I t , w ’ (4.24b)

' dW \ _
\ dT / I. P

( —  )\ d\ I t , p ’ (4.26b)

I —  ) = ~\ dT Ip, 1 \ dp I t , i (4.27b)

dW \ __ 
dT } s, V ( e s )\ dl lw,  v ’ (4.17c)

dV \ _  
dT )s. W (— )\ dp lv,  w ’ (4.18c)

( w ) s . t = (
dS \
d W ) t , p » (4.20c)

( f ) , 5= (
dS \ 
dVlp, (4.21c)

dW \
. dS I t, v ’ (4.23c)

(— ) = (\ dp /v,  W  \
' dV \
k dS I t , w * (4.24c)

I s t ) -[ dW) i, p (4.26c)

I — ) = -\ s r  Ip, { m . 6- (4.27c)

4.3 Systems W ith Variable Amounts of Substance

4.3.1. In Sec. 3.2 we showed th a t for systems w ith a variable 
amount of substance the combined equation of the first and second laws 
of thermodynamics is w ritten for a simple system in the form (3.144)

T dS =  dU +  pdV  — q>dG,
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and for a complex system in the form (3.145)
T dS =  dU +  pdV  +  \ d W  — cp*dG.

By the same methods tha t we applied in Secs. 4.1 and 4.2 to 
Eqs. (1.27a) and (1.30a), from Eqs. (3.144) and (3.145) we can obtain 
the Maxwell equations for systems with a variable amount of sub­
stance.

4.3.2. We write Eq. (3.144) in the form (3.146) 
dU =  T dS — pdV  +  cpdG.

Combining this relation w ith (2.30)j; we see tha t for V constant

( § ) S. v = ( l ) G. v  <4 -28>
and for S  constant

( - i r ) r , s = - ( w ) a . s -  <4-29>
If we employ (3.4) to write (3.146) in the form (3.147) 

dH  =  T dS  -f- V dp cp dG,

then, combining this with (2.30), we see th a t for p  constant

{ —  ) = (_22_) (4.30)
V dG J s , p  \ dS ) g , p

and for S  constant

( J L -  ] . (4.31)
\ dG ) p, S V dp /G,  S

Next, (4.28) together w ith (3.7) yields (3.148)
dF =  — SdT  — pdV  +  cp dG,

and if we employ (2.30), we obtain for V constant

(4.32)
\  dG ) t , V  \  dT ) g , V  V  ’

and for T  constant

_  ( dP ) . (4.33)
\  dG ) v , T  V dV ) g , T  

Finally, if we combine (4.28) w ith (3.4) and (3.7), we obtain (3.149) 

dO =  — SdT  +  V dp +  cp dG.

Hence, for p  constant

I  dT )G.Cp
(4.34)
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and for T  constant
( dV \ _ /  \d(p \
\ dG ) P, t \  dp ) g , t '

(4.35)

Obviously, Eqs. (4.28) through (4.35) are the Maxwell equations 
for a simple system with a variable amount of substance.

4.3.3. The derivatives of q? on the right-hand sides of the Maxwell 
equations for simple systems w ith a variable amount of substance 
can be calculated in the following way.

(1) Since the derivative (dcpldS)GtV is calculated w ith G kept con­
stant, it is clear that

/  g<p \  1 ( !dcp \
V dS J o ,  V  G V ds ) v  *

From Eq. (3.43)
cp =  u +  pv  — Ts

we see that

(~lr),!= (“§?"),+u T~ s
Since in accordance with (2.6)

I J L . )  = f  J e . )  f _ 2 2 L )
\ ds ) v  I dT ) v  \ ds J v 

and, as we will show in Sec. 5.3.1,
dT \ T

(4.36)

(4.37)

\  ds ) v
(4.38)

where cD is the isochoric heat capacity of the substance, combining 
(3.26a) w ith (4.37) we obtain

Em ploying (4.36) and (4.39), we obtain from (4.28)

(2) I t is also obvious that
( a<p \ 1 ( dy \
\ dV ) c , s ~  G \ dv j s*

From Eq. (3.43) it follows tha t

( “i ^ ) s= ( ~ 4 r ) s+ p + i ; ( ” ^ " ) s_ s  ( ~ ) <

(4.39)

(4.40)

(4.41)

(4.42)
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If we take into account (3.27a) and bear in mind th a t according 
to (2.6)

<«3>
we obtain

Combining Eq. (4.29) with (4.44) and (4.41), we have

(-S-)v, s= -  -f (“fir), 0 ~ s (-H-)J • <4-45>
(3) We can easily show that

( dy \ _  1 / aq> \
V dS JG. p G V ds ) p ‘

From Eq. (3.44) 

it follows that

(4.46)

(4.47)

Taking into account (3.29a) and the following relation (see
Sec. 5.3.1)

( dT \ T (4.48)\  ds l P C p  ’

from (4.47) we obtain

( 5(P \ _ Ts (4.49)
V ds )p C p

Combining (4.49) and (4.46), from (4.30) we obtain

( aT \  =
V dG ) s t p

Ts
Gcp (4.50)

(4) We can also show

( a ( f ) = ( -V dp 1g,S V
a<p \
dp ) s'

(4.51)

From (3.44) it follows that

/ acp \ ___/ dh \
V dp Is { dp )s

(4.52)

or, with due regard for (3.30a),

dT \
dp ) s'

(4.53)

7 — 0 4 2 7
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Combining this with (4.51), from (4.31) we find that

Co 3̂ CQ
II c 1- s ( - dT \ 

dp (4.54)

(5) Further, we can prove that

^ 
-s 

n II ( d<f> 
V dT (4.55)

By differentiating (3.43), we obtain

(4.56)

Since (see Sec. 4.3.1)

( - w - ) . = r ( -
ds \ 
dT ) V

(4.57)

we have
dp \ 
dT j1 — $. 

V
(4.58)

Combining this with (4.55) and (4.32), we have

- ( •
dp \ 
dT ) v ' (4.59)

(6) We can easily show that
/ 3cp \ _  1
\ dV ) g, t G

Sep \
I dv ) t ' (4.60)

From (3.43) we see that

("S~)t==(“&“)t +P + v { - j r )T ~ T  1 (4>61)

Since (see Sec. 5.1.1)

( - £ - ) r  =  r H r ) . ~ ' ’- <4 ' 62>
in accordance with the Maxwell equation (4.3) from (4.62) we obtain

( - f H r H - f H r -  (4' 63>

Thus, taking into account (4.60), we can transform Eq. (4.33) to

( i ) „ = - f ( 4 U  <4-64>
(7) I t  is obvious that

(4.65)
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If we use (4.65) and (3.35a), from (4.34) we obtain

(8) F inally , we see that

I dcp \ __ / dcp \
I dp ) G , T  I dp I t  '

Combining this w ith (3.36a), from (4.35) we obtain

(4.66)

(4.67)

(4.68)

These relationships define more precisely the Maxwell equations 
for simple systems w ith a variable amount of substance.

4.3.4. The Maxwell equations for complex systems with a variable 
amount of substance can be obtained by a method sim ilar to that 
used in Sec. 4.3.2.

From Eq. (3.150)

dU =  T dS — pdV — U W  +  xp*dG

it follows that
/ dT 
\ dG ) s , IV, W (

’ dcp* \ 
, dS I G, V,  XV ’ (4.69)

dp ) 
dG )̂ V,  w ,  s

/ dcp* 
I dV )  G, XV, S ’ (4.70)

dl \
dG Ĵ XV, V,  s

/ dcp* 
I dW ) g, v , s ' (4.71)

From Eq. (3.151)
dH* =  T dS  +  V dp +  Wdl  +  cp*dG

it follows that
( dT \ ( dcp* \
I  dG I s ,  p,  l  \ dS ) g , p , z ‘}
I dV \ _ / dcp*'1 \
\ dG Ip, l,  S I dp /G.Z.S'*
/ dW \ _  / dcp* \
I dG ) i , p , s ~ \  dl ) g, p. S'

From Eq. (3.152) 
dF =

7*

— S dT — pdV — \ d W  +  y*dG

(4.72)

(4.73)

(4.74)
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it follows that

- (
dS \ _  

. dG I t , v,  w ~
/ dcp* 
[ dT )c , V, w ’

(4 .75)

- ( dG } v ,  W ,  T

/ <5cp* 
{ dV ) G, W ,  T  ’ (4 .76)

- (

II /  dcp* 
[ dWm)g , V,  T  ' (4 .77)

F in a lly , from (3.153)

d(D* = : -  S dT +  V dp +  W-d\ +  cp* dG
it fo llow s that

— t » L \  -
\ dG ; t . v, l

f  <5cp* 
V dT ) g, p, s ’ (4 .78)

— f — )V dG ) p ,  1, T
(
V dp ) g, i , r ’ (4 .79)

(•
dW \ _ /  
dG Jg. p, T I

3cp* \
G, P, T* (4 .80)

Of course, the derivatives of cp* on the right-hand sides of Eqs. (4.69) 
through (4.80) can be calculated by using relations sim ilar to the 
above mentioned equations (4.40), (4.45), (4.50), (4.54), (4.59), 
(4.64), (4.66), and (4.68).



5 Simple 
Thermodynamic Systems

5.1 Partial Derivatives of Thermodynamic Potentials
Let us consider the partia l derivatives of four therm odynam ic poten­
tia ls (u , h, / , and q) w ith respect to the variables p , v, T,  and s . 
Obviously, we can find a derivative w ith respect to one of these 
variables if another variable, of the rem aining three, is kept con­
stan t; for example, if the derivative is calculated w ith respect to T , 
it can be defined for either p  constant, v constant, or s constant. We 
see th a t each of the named characteristic functions has twelve deriv­
atives in all. Of course, not all are of equal practical importance. 
Therefore in this section we will focus our atten tion  on the im portant 
relations and give the other relations for reference.

5.1.1. We sta rt w ith the partia l derivatives of internal energy. 
In Chap. 3 we found tha t, according to (3.26a),

and, according to (3.27a),

W hat are the other relations for the partia l derivatives of in ter­
nal energy?

From Eq. (3.25a)
du =  T ds — p dv, 

taking into account (2.63) and (2.64), we obtain

{ - ^ ) r = T { ^ ) r ~ P -  

Combining this w ith the Maxwell equation (4.3), we find that

( t t ) ,  = T i w ) - P -  <5-2>

This relation gives the variation of internal energy w ith volume in 
an isothermal process.
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In the same manner we can obtain a relation that gives the varia­
tion of internal energy with pressure in an isothermal process:

(£ )r = r (£ )r - '(£ )r -  <5'3>
Combining this with the Maxwell equation (4.4), we obtain

<5-4>

By the method used in (3.25a) w ith account taken of (2.63), (2.64) 
and the Maxwell equations, we can easily show that

The quantities (du/dT)v, (duldT)p, and (du/dT)s will be considered 
in Sec. 5.3.

5.1.2. We turn to the partial derivatives of enthalpy. According 
to (3.29a) and (3.30a),

( i r l = r  ( f  ) .= » •
Next, Eq. (3.28a)

dh =  T ds +  v dp 

together with (2.63) and (2.64) yields

( w ) r = T { w ) r  +  v - <5-10>
If we combine this with (4.4), we find that

(■ 0 - )T = B- r ( - f F ) , -  <5 ' U >

This relation gives the variation of enthalpy with pressure in an 
isotherm al process.
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In the same manner we obtain a relation giving the dependence 
of the enthalpy on the volume in an isothermal process:

( ^ ) r = r ( t ) r  +  » ( t ) r - (5.12)

Combining this with (4.3), we obtain

(5.13)

If we use (3.28a), (2.63), and (2.64) and the Maxwell equations, we 
can show that

T t dP_ |
I dv  ) p V d T  ) s’ (5.14)

= v - T  ( — )\  dp )v I 3T  j s’ (5.15)

<0
cd o
CO> COII (5.16)

(5.17)

( £ ) T= T - » m , -
(5.18)

We will consider the quantities (dhldT)p, (dhfdT)v, and (dh/dT)s in 
Sec. 5.3.

5.1.3. The equations listed in this section, especially (5.11) and 
(5.2), are of great value for calculating the thermodynamic proper­
ties of substances. If we are given the data on the therm al properties 
of the substance (data on p , v , T-dependence), these equations enable 
us to find the values of the enthalpy and internal energy and, con­
versely, to compute the thermal properties of the substance by the 
given enthalpy and internal energy.

Given the pressure p and tem perature T, we can find the value of 
the enthalpy by integrating Eq. (5.11):

p

h(p ,  T) =  h (p„  T ) + ^ [ v - T  { ^ r ) ^ \ d p .  (5.19)
P0

Here h (p 0, T) is the enthalpy of the substance in an in itial state 
w ith the same tem perature but different pressure p 0.

Sim ilarly,
V

u(v,  T) =  u ( v0,
v0

(5.20)
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Here u (y0, T) is the internal energy of the substance in an in itia l 
state with the same tem perature T but different volume u0.

If we know the data on the therm al properties of the substance, 
we can calculate the integrals on the right-hand sides of (5.19) and 
(5.20); here, of course, in addition to the given data on the p, v, T- 
dependence we must calculate the derivatives (dv/dT)p or (dp/dT)0. 
Note tha t in both cases integration is carried out along an isotherm, 
namely, Eqs. (5.19) and (5.20) give the variation of the enthalpy 
and internal energy w ith p  and v, respectively, but w ith T kept 
constant.

If we take for a point of reference on the given isotherm a caloric 
quantity  (h or u) in the ideal-gas state (where the pressure and density 
of the gas are zero), Eqs. (5.19) and (5.20) become, respectively,

and

P

h ( p ,  r> =  M 7 - ) + ( [ i ’ - J ' ( - j £ ) ji] d p  (5.21)

u(v, T ) ^ u „ ( T ) + ^ [ T ( - ^ r ) v- p ] d V. (5.22)

Here hQ (T) is the enthalpy in the ideal-gas state at tem perature T , 
and u oo (T ) is the internal energy in the same state (with an infinite 
specific volume). We note that the caloric quantities of an ideal gas 
are functions of temperature alone. The values of h0 and u *  can 
be calculated with a high degree of accuracy by using quantum - 
statistics methods; the values are obtained on the basis of the data 
on the molecular structure of the substance.

Equations (5.19) through (5.22) are widely used in calculating 
the thermodynamic properties of substances via experimental p, v , 
T data.

To solve the inverse problem, i.e. to calculate therm al values by 
the given caloric properties, we transform (5.11) and (5.2) to

V

and

(5.24)
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(it is worth noting that 1/T, p / T , and vtT on the right-hand sides of 
these relations are variables when wre consider the Massieu-Planck 
functions). Integrating these equations, we obtain, respectively.

T
v(p, T) v(P. T0) ! f |I dh \ , 1 (5.25>T ~ To ^  J 1

To
t dp I t T

P (v, T) P(v, T0)
T

f
(-& ),<« T -

(5.26).T T0 J
To

Here v (p, T 0) and p  (v , T 0) are the values of v and p  in an in itial 
state with the same pressure (Eq. (5.25)) or the same volume 
(Eq. (5.26)) as in the sought state. We note tha t in Eq. (5.25) we 
integrate along an isobar, while in (5.26) along an isochore. The 
partial derivatives of the caloric quantities under the integral sign 
are calculated by using the existing data on caloric properties of 
the substance.

The history of thermodynamic calculations of water vapor proper­
ties knows cases where the specific volumes of water vapor were calcu­
lated using Eq. (5.25) on the basis of experimental data on the 
enthalpy.’•

To calculate u by the known p  versus v dependence on an isentrope 
or the known T versus s dependence on an isocliore and h by the 
known v versus p  dependence on an isentrope or the known T  versus s- 
dependence on an isobar, we can obtain simple relations from 
Eqs. (3.26a), (3.27a), (3.29a), (3.30a). From (3.27a) we see tha t

V

u(v,  s) =  u ( v0, s) ~ ^  Pdv,  (5.27}
»0

from (3.26a) that
S

u(v,  s) =  u(v,  50) +  j  T els, (5.28}
SO

from (3.30a) tha t
p

h(p,  s) =  h ( p 0, s) +  j  dp, (5.29)'
Po

and from (3.29a) that

h (p ,  s) =  h(p,  s0) - f  j  T ds.
Sn

(5.30>
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Here u (y0, s) and h (p0, s) are, respectively, the internal energy and 
enthalpy in an in itia l state on the isentrope under consideration, 
u (v , s0) is the internal energy in an in itial state on the isochore 
under consideration, and h'(p, sQ) is the enthalpy in an in itial state 
on the isobar under consideration.

5.1.4. We end this section by examining the partia l derivatives of 
the isochoric-isothermal and isobaric-isothermal potentials. Ac­
cording to (3.33a) and (3.32a).

These give the relations for calculating the value of /  by the known p 
versus u dependence on an isotherm or the known s versus T de­
pendence on an isochore; from (3.33a) we see th a t

V

f (v,  T) =  f ( v 0, T ) - j  p d v , (5.31)
v0

while from (3.32a) tha t
T

f (v,  T) =  f(v,  70) - J  sdT .  (5.32)
To

Here /  (u0, T) and /  (y, T 0) is the isochoric-isothermal potential in 
an in itia l state on the isotherm or isobar, respectively. Equa­
tion  (3.31a)

df =  — s dT  — p dr- 

together w ith (2.63), (2.64), and the Maxwell equations yield

( df ' 
I dp t — P

1 da 
\~dp ) r - (5.33)

( # : ) , = — P
1 do
l e F ) v ~ S’ (5.34)

m - P - " s (
dT \ 
dv I p  ’ (5.35)

( & ) . = ~  S{
r dT 
, dp ) . . (5.36)

/ df 1 
\ ds ,h = — P

/ dT 
I dp (5.37)

( 1 ) 5 - p ( -
dv \
W 1 — s ,

5
(5.38)

! ) „ = -- —
Ts
Cv - P {

dT \ 
dp ) s , (5.39)
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According to (3.36a) and (3.35a),

=  and ( l r ) p = - s-
These equations enable us to easily obtain the relations for calculat­

ing tlie value of cp by tlie known u versus p  dependence on an iso­
therm

p
<P (P, ^) =  (P(Po- T )+  \ vd p  (5.43)

P0
or by the known s versus T dependence on an isobar

T

T (P> T) — (p (p, T0) £ s dp. (5.44)
To

Here cp (p0, T) and cp (p, T 0) is the isobaric-isothermal potential 
in an in itial state on an isotherm or isobar, respectively. From 
Eq. (3.34a)

chp =  — s dT  -j- v dp ,

using (2.63), (2.64), and tlie Maxwell equations, we easily obtain
/ <3cp 
\  dv ) t =  V

( i i M
\  dv h r  ’

(5.45)

m.
=  - v ( * £ - )  

\  dT ) — s,
V

(5.46)

m =  v —
V

( dT 
S \~dp ) . .

(5.47)

( <3<P  ̂
\  dv )

( dT 
S \  dv ) p ’

(5.48)

m1 T
I dT 

V ( dv ) p ’
(5.49)

( <3cp 
\  dT ) . = ’ (

dp \ 
dT - s , (5.50)

( d ^ \  = 
V ds lv

Ts
c v - ( ■

dT \ 
dv j s ’

(5.51)

dy \ _
dv 1 s » ( % ■ ) l.-H' £ )  ■i dv J , (5.52)
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< ? f p  \  I dT \
dp ) S~ V S \ d p ) x ’

d c p  \    Ts
ds } p cp

(5.53)

(5.54)

The above relations arc employed in an analysis of thermodynamic 
diagrams when one of the coordinates is /  or cp.

5.2 The Gibbs-Helmlioltz Equations

5.2.1. Let us write Eqs. (3.41) and (3.44) in the following way:

u =  f  Ts (5.55)
and

h =  cp +  Ts. (5.56)

If in these relations we substitute 5, respectively, via (3.32a) and 
(3.35a), we obtain

and

h = v - T ( w ) P- <5 -58>

We obtained these equations for mass specific quantities, but the 
same can be derived for the entire thermodynamic system:

T, =  F - T ( w ) v  <5 '57a>
and

/ f = ® - r ( l r ) P - <5 -58a>

We can easily show that these equations can also be represented 
thus:



5. Simple Thermodynamic Systems 109

and , respectively,

(5.59a)

(5.60a)

If we take into account the definitions of the Massieu functions 
(3.169) and the Planck functions (3.176), we can write Eqs. (5.59a) 
and (5.60a) thus:

We see tha t these relations, respectively, coincide with Eqs. (3.170) 
and (3.182) derived earlier.

Equations (5.57a) and (5.58a) are known as the Gibbs-Helmholtz 
equations. They play a significant role in chemical thermodynamics.

5.2.2. Let us examine a thermodynamic process in a complex 
isochoric-isothermal system. Obviously, for the entire system we 
can write (5.57a) for the in itia l state of the process as

We recall tha t in Chap. 3 we considered the amount of work which 
a complex system can do. The combined equation of the first and 
second laws of therm odynam ics for such a system is of the form (1.24):

(5.61)

and

(5.62)

(5.63)

and for the final state as

(5.64)

Subtracting termwise (5.64) from (5.63), we obtain

-  (P, - Ut) =  (F, -  F2) -  T ( " {F'a f  V  ) r . (5.65)d ( F1- F 2)
dT

T dS =  dU +  p dV +  dL*, (5.66)
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where dL* =  £ dW.  If we combine this equations with (3.7), we 
obtain

dL* =  — dF — S dT — p dV.  (5.67)

We see that if the system is under isochoric-isothermal conditions 
(F  and T constant), then

and, hence,
dL$<T =  — dF 

L v ,t =  F1 — F 2.

(5.68)

(5.69)

Thus, the system performs work (except work of expansion) at the 
expense of the isochoric-isothermal potential of the system. 

Combining (5.65) with (5.69), we find that

- A  U =  L I . t - T ( 2 % Z - ) v , (5.70)

where
A U = U 2 — U1 (5.71)

is the difference between the internal energies of the system in the 
final and in itial states of the process.

In a similar manner, for a thermodynamic process in a complex 
isobaric-isothermal system we can write for the in itial and final states 
of the process

t-k II © 1

^ 
© (5.72)

and

) p ’
(5.73)

whence

<N
©1©Ttci1T ^ ( f , - ® 2)

dT )„• (5.74)

Equation (1.24), by employing (3.7) 
formed to

and (3.4), can be trans-

dL* =  -  d<t> -  S dT +  V dp. (5.75)

which implies that for an isobaric-isothermal system (p  and T con­
stant)

dL*tT =  — d ^  (5.76)
and, hence,

L%,t =  -  (I>2. (5.77)

Thus, the system may perform work at the expense of the isobaric- 
isothermal potential of the system.
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If we combine (5.74) w ith (5.77), we find that

- A H  =  L*p<t- T  (5.78)

If the process in the system is accompanied by chemical transform ­
ations, L* is the work performed in the reaction. We know that 
in chemical therm odynam ics the concept of the heat of reaction 
is widely used; since the heat of isochoric-isothermal reaction Qv  is 
equal to the change in the internal energy of the system as a result 
of the reaction.

Qv = U t -  U,, (5.79)

and the heat of isobaric-isothermal reaction Qp is equal to the change 
in the enthalpy of the system as a result of the reaction,

Qp =  H 2 -  H, ,  (5.80)

we can write the Gibbs-Helmholtz equations (5.70) and (5.78) thus:

- Q r  =  L h r - T ( ^ % ^ ) r  (5.81)

and

- Q P =  L t . T - T  (5.82)

The Gibbs-Helmholtz equations in this form find wide application 
in chemical thermodynamics. For one, they allow the researcher to 
find such an im portant characteristic of chemical reaction as the 
heat of reaction not by means of direct thermochemical measure­
ments but indirectly, by measuring the work L*  performed in the 
process tha t accompanies this chemical reaction and by calculating 
(dL*!dT).  These equations are also im portant for analyzing the 
operation of reversible voltaic cells (see Chap. 9).

5.2.3. Speaking of the Gibbs-Helmholtz equations, it is interesting 
to examine a group of relations sim ilar to them in structure. We 
recall tha t the Gibbs-Helmholtz equations (5.57a) and (5.58a) were 
obtained as a result of replacing S  in Eqs. (3.9) and (3.15) w ith the 
help of (3.32) and (3.35), respectively.

Simple analysis shows that we can transform the following rela­
tions in a sim ilar manner:

H  =  U +  pV, (1.14)
d> =  F +  pV, (3.16)
F =  U — TS, (3.9)
<D =  H  — TS. (3.15)
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We can transform Eqs. (1.14) and (3.16) by substituting the corre­
sponding partial derivatives for p or F, and Eqs. (3.9) and (3.15) by 
substituting the partial derivatives for T or S.  We have at our dis­
posal the following relations (considered in Chap. 3), which express p, 
V, T and S  in terms of partial derivatives:

and

and

and

and

T = {
' dU \
, dS l v (3.26)

T = [
d l l  \  

dS ,/p’ (3.29)

P —  ~ ( d U )
\ dV I t

(3.27)

P =  —( &F )\ dV I t ’
(3.33)

^=1( d l l  \

{ d p  I S
(3.30)

< 9 0  \ 
d p  I t ’

(3.36)

S  =  - I d F )I dT l v
(3.32)

s =  - t ™ )
\ dT ) p ‘

(3.35)

We see that replacing p, F, T and S  in Eqs. (1.14), (3.16), (3.9), 
and (3.15) by the partial derivatives given here yields 16 equations. 
Two of them (namely, those obtained from (3.9) via (3.32) and from
(3.15) via (3.35)) we already know—they are the Gibbs-Helmholtz 
equations. We can easily obtain the remaining relations of this 
group. Here we give only the equations sim ilar to the Gibbs-Helm­
holtz equations in structure.

If we combine (1.14), in succession, with (3.27) and (3.30), we find 
th a t

H =  U - V (5.83)

and

(5.84)
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Replacing p  and V (in 3.16) w ith the help of (3.33) and (3.36), 
we obtain

e-

<15fenII© (5.85)

and

(5.86)

If we substitute (3.26) into (3.9), we find that

(5.87)

while substitu ting (3.29) into (3.15) yields

* ( « ) „ • (5.88)

We see tha t for systems w ith a constant amount of substance these 
relations can be w ritten in terms of mass specific quantities:

h =  u ~ v / du 
l"5tT ).* (5.83a)

u =  h — p / dh
\ dp (5.84a)

<P - f  — v 1m 1 r* (5.85a)

f  =  <P — P (
’ 3cp ’ 
) 9P ;) r  ’ (5.86a)

f  — u s ( du ' 
. ds ,1.. (5.87a)

(p =  h — s 1 dh
\~dT ).■

(5.88a)

We note in passing th a t from these relations, which express p,  v , 
T  and s in terms of the corresponding partial derivatives, we can 
obtain the following useful equations: from (3.26) and (3.29)

( 4 a - l dS )p > (5.89)

from (3.27) and (3.33)
( dF \ 
i d V  I t *

(5.90)

from (3.30) and (3.36)

) dp I t 7
(5.91)

8—0427
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and from (3.32) and (3.35)

(5.92)

Incidentally , if by means of these relations we replace the partia l 
derivatives in Eqs. (5.83) through (5.88) and in the Gibbs-Helm- 
holtz equations (5.57a) and (5.58a), we will obtain the rem aining 
relations from the group of above mentioned 16 equations.

We can readily show th a t just as we can write the Gibbs-Helmholtz 
equations (5.57a) and (5.58a) in the form (5.59a) and (5.60a), we can 
write Eqs. (5.83) through (5.88) thus:

H

i:

<D =

F =

F =

G> =

?
s

s

T

5
T

V

P

(5.93)

(5.94)

(5.95)

(5.96)

(5.97)

(5.98)

N aturally , these relations can be w ritten in terms of mass specific 
values.

We should note th a t Eqs. (5.83) through (5.88a) obviously have 
a certain  pedagogical interest: for one, Eqs. (5.84), (5.84a), and 
(5.83), (5.83a) serve the same purpose for isochoric-isentropic 
(V and S  constant) and isobaric-isentropic (p and S  constant) 
systems, respectively, as the Gibbs-Helmholtz equations do for
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isochoric-isothermal and isobaric-isothermal systems. But unlike 
the Gibbs-flelm holtz equations, these equations are insignificant 
in therm odynam ic calculations.

5.3 Equations for Heat Capacities

5.3.1. In thermodynamics the (mass specific) heat capacity in the 
most general form is given by the relationship

where cz is the heat capacity in a process in which a parameter, z, is 
kept constant.

In this relation we can replace z by any generalized forces and gener­
alized coordinates. The most widespread are the isobaric heat 
capacity

(5.99)

(5.100)

and the isochoric heat capacity

(5.101)

Since according to (2.6)

(5.102)

and

and from (3.29a) and (3.26a) it follows that

(5.104)

and

(5.105),

we can write (5.100) and (5.101) as

(5.106)

(5.107).

and
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5.3.2. In  Chap. 7 we will introduce the concepts of the heat capac­
ity  along the boundary curve, cs, and the heat capacity of a two- 
phase m ixture, cx.

5.3.3. We can find the equation that links the heat capacities cv 
and cv by the following method.

In accordance w ith Eq. (2.71) we write

( £ ) , = ( £ ) . + ( £ ) , ( £ - ) , •  <5-108>
We replace the derivative ( ds/dv) T via the Maxwell equation (4.3) 
thus:

Combining (5.100) and (5.101), from (5.108) we obtain

(5.109)

Obviously, by means of (2.68) this relations can be w ritten

c _ c ( - Y
cp c» 1 V dv ) t \ dT )p (5.110)

or

(5.111)

For an ideal gas, whose state is described by the ideal-gas equation
pv =  R T , (5.112)

the above relations imply that
Cp cv — R , (5.113)

which is known as Mayer’s formula. Equations (5.109) through 
(5.111) are often used in calculating the heat capacity cv in terms 
of the known values of the heat capacity cp, when it is difficult to 
determine cv experim entally.

5.3.4. Taking into account (2.6), we can transform Eq. (5.100) to

c =  Tp 1 (5.114)

Combining th is w ith the Maxwell equation (4.2a), we find that

cp =  T (5.115)

In a sim ilar manner, from Eq. (5.101) w ritten as

(5.116)
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and the Maxwell equation (4.1a) we obtain

(5.117)

E quation  (5.115) enables us to reveal the thermodynamic meaning 
of an empirical relation known in solid-state physics as the Griinei- 
sen relation. I t  follows from this relation tha t the bulk therm al 
expansion coefficient for metals,

1a  =  — v (5.118)

in a wide tem perature range is uniquely related to their isobaric 
heat capacities:

a  =  0cp, (5.119)

where 0 is a constant characteristic of each m etal. The relation 
between cp and a  is clearly seen from Eq. (5.115), which can be 
w ritten  as

1
vT (5.120)

If we compare (5.120) w ith (5.119), we see th a t the quantity  
(1/vT) (dT/dp)s rem ains constant for those m etals for which the 
Griineisen relation is valid.

5.3.5. We can obtain one more equation relating cp and cv in the
following way. If we divide Eq. (5.115) by Eq. (5.117), we have

) .•  <5-121>

Combining this w ith (2.6) and (2.68), we find tha t

(-&).=■£(£),• <5-122>
5.3.6. Taking the partia l derivative of (5.11)

w ith respect to tem perature at p  constant, we have

W  =  <5 -123>

Since the value of a mixed derivative does not depend on the order 
of differentiation, we see th a t

d2k _  r d / dh \ T r  J _  / dh_\ 1 
dpdT 1. dT \ dp /  T J p  L <?p I dT J p j r ’ (5.124)
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whence combining (5.124) and (5.10G) from (5.123) we obtain

T (5.125)

This relation determines the variation of the heat capacity cp with 
the pressure on an isotherm.

In a sim ilar manner, if we differentiate Eq. (5.2) with respect to 
tem perature at u constant,

i S r - * ( & ) . .  <5-12e>
and bear in mind that

d2u  V d / du \ "1   r d / du \ *1
dvdT L dT V dv I t Jv L dv \ dT ) v \ T  ’

and (5.107), we obtain

(5.127)

(5.128)

which is a relation determining the variation of cv with the volume 
on an isotherm.

From (5.125) we see that
p

cp (p ,T )  =  cp ( . p „ T ) - T \  ( — r ) p dP- (5.129)
P o

This relation determines the variation of the heat capacity cp on 
an isotherm, with the pressure increasing from p 0 to p.

In the same manner, from (5.128) there follows the relation tha t 
determines the variation of the heat capacity cv on an isotherm, 
with specific volume increasing from to v:

b>
cv (v' T ) = c v (u0, T) +  7, j  (5.130)

Equations (5.129) and (5.130) are widely employed in calculating 
the thermodynamic properties of substances. For one, if we know 
the heat capacity of a substance at low pressures, these equations 
enable us to calculate the heat capacity at high pressures by the 
given data on the p, u, ^-dependence of the substance. They also 
allow us to calculate the heat capacities of a condensed phase where, 
as is known, the value of the heat capacity is affected very little  
by the pressure, e.g. atmospheric pressure (the experiment for finding 
the heat capacity at atmospheric pressure is simple and accurate). 
Due to this, the calculation of the heat capacity of a condensed
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phase at high pressures is far simpler than a calorimetric experiment 
with such a state of substance.

The situation is the same when we calculate the heat capacity of 
a substance in a gaseous phase at high pressures. Now we can write 
Eqs. (5.129) and (5.130) in a more convenient form

Cp(P, T ) = c r, { T ) - T ] ( ^ r ) t dp (5.131)

c.O'. 7’) =  c ^ (7 ’) +  J’j  (-f^ ' r ) j v , (5.132)

where we denote by cPq (T) and cVoo(T), respectively, the constant- 
pressure and constant-volume heat capacities of a substance in an 
ideal-gas state. The first term on the right-hand side of this equation 
is the part of the heat capacity of a real gas that depends only on 
tem perature (the heat capacity of an ideal gas) and, consequently, 
independent of pressure; the second term is the part that depends 
on pressure. In Sec. 5.1 we pointed out that the caloric properties of 
a substance in the ideal-gas state can be calculated w ith high accu­
racy by quantum -statistics methods on the basis of the data on 
the molecular structure of the substance.

5.3.7. Equations (5.125) and (5.128) enable us to solve the inverse 
problem; namely, we can calculate therm al quantities in terms of 
the known values of cp or cD.

Double integration of Eq. (5.125) yields

v (/>. T ) =  V(p , r„) +  ( £ ) * ’ T,)< r -  r„)

<5 -133>
To T „

where v (p, T) is the specific volume of a substance at a given pres­
sure p  and tem perature T, and v (p , T 0) and (dvIdT )̂ p*To) are the 
quantities in the in itial state w ith the same pressure p  but different 
tem perature T 0.

In a sim ilar m anner double integration of (5.128) yields

P  O'. T ) - P  ("■ T 0) +  ( $  ) "  ( T -  T„)

- f f  f d r h ^ '
To To

(5.134)
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where p (v, T) is the pressure at the given specific volume and tem ­
perature, and p  (v , r 0) and (dp/dT)v 'To) are the quantities in the 
in itia l state w ith the same volume v bu t different tem perature T 0.

We note th a t these relations are interesting not only from the theo­
retical point of view. In 1932 A. Knoblaugh and others compiled 
tables of w ater vapor specific volumes on the basis of the data (avail­
able at tha t time) on the isobaric heat capacity of w ater vapor; it 
was the most unusual case in the history of therm odynam ic investi­
gations when scientists had data on the heat capacity cp th a t was 
more accurate than th a t on water vapor specific volumes.

5.3.8. By the known values of the heat capacities cp and cv we 
can easily determine the change in the enthalpy and internal energy 
of a substance for p  and v constant: from (5.106) and (5.107) we 
see tha t

T

h (p, T) =  h (p, T 0) +  j  cp dT
To

(5.135)

T

u(v,  T) =  u(u,  \ c v d T , (5.136)
T c

where h (p ,  T 0) andu(u , T 0) are, respectively, the enthalpy and inter­
nal energy of a substance in an in itia l state w ith the same pressure 
and specific volume but different tem perature.

We see th a t the values of h 0 (T) and Uoo (T) from Eqs. (5.21) and
(5.22) are related to cp0 (T) and cPeo (71) by the following equations:

T

h0(T) =  h0 (0)4- \ c Vt{T)dT  (5.137)
o

and
T

ueo(7,) =  uoo(0 )-f ^cVgo(T)dT .  (5.138)
o

Here h0 (0) and u *  (0) are, respectively, the enthalpy and internal 
energy of an ideal gas at T  =  0 R ; th is tem perature is usually taken 
as the reference point for h0 and u ro.

5.3.9. To compute the derivatives (du/dT)s and (dh/dT)t we give 
two more equations related to the heat capacities cv and cp.

In  accordance w ith (2.71) we can write

( £ ) . - ( £ ) .+ ( £ ) , ( £ ) .  (5-139>
f dh \  _ / dh \  . (  dh \  /  dh \
[ ~ d f ) s ~  \1PF  ) \~dp ) T  \  dT } s m

and
(5.140)
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Combining these relations w ith (5.2) and (5.11), respectively, we 
obtain

( & ) . - « » +  [ r  ( # ) . - * ]  ( £ ) .  <5'141>
and

<5 ' 142>
5.3.10. Finally, we write (5.42) and (5.54) as

c” = - r s ( | - ) .  <5 J 4 3 >
and

{■%),■ <5 - 1 4 4 >

These interesting equations relate isochoric and isobaric heat capac­
ities to the derivatives th a t characterize the variations of the iso- 
choric-isothermal (for v constant) and isobaric-isothermal (for p  con­
stant) potentials w ith entropy.

5.4 Equations for Entropy

5.4.1. The variation in entropy w ith the therm al quantities- 
(p , v , T) is given by the Maxwell equations discussed in Chap. 4

and the relationships

( £ ) , = ■ ? - .  (5-100a>

(£ - ) .= -? ■ ■  <5 -101a>
5.4.2. Equations (4.1a) and (5.101a) im ply that the change in 

entropy in an isochoric process is defined by the equation
P2

*(p. Pi) — s(v, Pi)= — j (§f ) sdp
p i

(5.145>
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s(v,  T J - s ( v ,  r , ) =  \ - j r d T -  (5.146)
Tl

here px and Tx are the state param eters at the in itia l point of the 
isochoric process under consideration, and p z and T 2 at the term i­
nal point of the process. We see tha t the changes in entropy, cal­
culated via (5.145) and via (5.146), are the same. This becomes 
obvious, for instance, if we compare the right-hand sides of these 
equations combined with (5.117).

Sim ilarly, from (4.2a) and (5.100a) it  follows th a t the change in 
entropy in an isobaric process is defined by the equation

t>2
s ( p , v 2) — s(p,  vx) =  j  ( % ) sdv

s ( p , T 2) - s ( p , 7*0= ) ^ r d T -
Ti

(5.147)

(5.148)

here v l and T x are the param eters at the in itia l point, and v 2 and 
T 2 at the term inal point of the isobaric process under consideration. 
From (5.115) we see tha t the right-hand sides of these relations are 
equal.

From (4.3) and (4.4) we finally obtain for the change in entropy 
in an isotherm al process

V2
s(T,  vz) =  s (T ,  v , ) =  j' ( l f ) v dv (5.149)

s(T,  p2) - s ( T ,  / - , ) = -  j  ( ■ § ) / ? .  (5.150)
Pi

here p t and v t determine the in itia l point of the isotherm al process, 
p 2 and u2 the term inal point of the process. We see from (2.68) tha t 
the right-hand sides of these equations are equal.

5.4.3. From (1.27a)
T ds =  du +  pdv

it follows tha t
P_ 
T » (5.151)
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while from (3.28a) written as
T ds =  dh — udp

i t  follows tha t

(£)
V

T '

(5.152)

(5.153)

These relationships are used for calculating the change in entropy 
in  processes with u constant and/i constant, respectively. From (5.151) 
we see that

1'2
s(u,  vz) — s(u, i \ ) =  \ - j rdv  (5.154)

n
{integration is carried out along the line u =  const), and from (5.153)

Pi
s(li, p2) — s(h,  P i ) =  — j  - j r d p  (5.155)

pi

{integration is carried c 
F inally , from (5.105)

and (5.104)

i t  follows that

s (uz,v)

and

s (hz p) -

along the line h =  const).

112 l- s ( u u u) =  \ - j - d u
Jui 

*2 1
s ( h u P )=  j - f d h .

hi

(5.156)

(5.157)

In the first relation the integral is taken along an^isochore and in 
the  second along an isobar.

5.5 Other Important Partial Derivatives 
of Thermodynamic Functions

5.5.1. Let us formulate some im portant relationships that deter­
mine the derivative (dvldp)s and the inverse, (dp/.dv)s.

In accordance w ith (2.71) we can write

(5.158)
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In accordance with the Maxwell equation (4.2),

t * L \
\ dp I s \ ds ) p '

jlere  the derivative (dv/ds)p, according to (2.6), can be w ritten as

(£ ) ,= (£ ) ,(£ ) , .  <5-159>
0r combined with (5.100a),

mP=~mP- ^ >

If we combine (4.2) with (5.160), from (5.158) we obtain 

In a sim ilar manner we can write

(&).= (t)r+ (& ).(!K }.-2 l^  (5'162>
From the Maxwell equation (4.1) ^

l dJL ) = - ( ? ? - )
V dv I s  [ ds J v ’ 

where, in accordance w ith (2.6), we can write
,0p_) =  iap_\ / W \
\ ds } i  \ dT ) v \ ds ) v ’

we find, combining this equation w ith (5.101a), that

(dp_\  _  _ _ T _  (dp_\
I ds U  cv \dT ) v '

and from (5.135), (4.1) and (5.137) we obtain

< 5 - 1 6 5 >

o

(5.163)

(5.164)

Equations (5.161) and (5.165) are rarely mentioned^in the litera­
ture. But these relations are very useful for certain thermodynamic 
calculations, as we will show in Chap. 7.

5.5.2. In thermodynamics we use the concept of the so-called ther­
m al coefficients which are defined thus:

the coefficient of isothermal compressibility
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the coefficient of adiabatic com pressibility

and the bulk therm al expansion coefficient (which was defined 
in  Sec. 5.3, Eq. (5.118))

5.5.3. The Joule-Thomson coefficient is defined by the relation

H f ) . , -  <5J68>
T his quantity  shows the variation of fluid tem perature w ith pressure 
in  adiabatic th ro ttling  (we note th a t the adiabatic thro ttling  proc­
ess occurs at constant enthalpy).

Obviously, in accordance w ith (2.67) the derivative (dT/dp)h can 
be w ritten thus:

( U = ~ ( U ( % L -

If we replace the derivatives on the right-hand side of th is equa­
tion by (5.106) and (5.11), we obtain a relation that defines the value 
of the Joule-Thomson coefficient:

(5.170)

We know th a t adiabatic th ro ttling  (for the states where p ,>  0, 
which is the region below the Joule-Thomson inversion curve) is 
used for gas cooling. An effective method of gas cooling is reversible 
adiabatic (i.e. isentropic) expansion of a gas (without external 
work); th is effect is defined by the coefficient of adiabatic expansion

(5.171)

From the obvious relation

(5.172)

combined w ith (5.100) and the Maxwell equation (4.4a), we see that

^ s =  c^ (5.173)

Comparing p and p 8 enables us to establish which of the two m eth­
ods of gas cooling is more effective. From r (5.170) and (5.173) 
we see that

p 8 — p =  vfcv. (5.174)
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Therefore, always
f t  S  P  i (5.175)

i.e. ad iabatic  expansion is the more effective method of gas cooling.
5.5.4. We know th a t in the process of adiabatic expansion of 

a real gas into vacuum (the Joule process), w ith the internal energy 
kept constant, the quan tity  (dTIdv)u is of great importance. I t  
shows how the gas tem perature changes in the process and can he- 
defined in the following way: according to (2.67) we can write

5.6 The Differential Equation of an Isentrope.
The Laplace Equation

5.6.1. Let us form ulate the differential equation for an isentropic 
process. Equation (3.28a)

dh =  T ds — vdp 

yields for the process under consideration

Here k  is the exponent of the isentropic process (or adiabatic expo­
nent). Then (5.179) becomes

This relationship  is widely used to calculate the adiabatic exponent 
ior a substance in various states.

5 .6 .2 . If we combine (5.122) w ith (5.181), we find that

(5.176)

Combining this w ith (5.107) and (5.2), we obtain

(5.177)

(5.178)

Combining th is w ith (5.7), we obtain

(5.179)

which is the equation of an adiabatic (isentrope). 
Let us introduce the notation

(5.180)

(5.181)
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From this and (5.108) it follows that for an ideal gas

k = (5.183)

Next, using Eq. (5.165), we can write (5.181) thus:

EE.) 1
dv I t J ‘ (5.184)

5.6.3. Obviously, Eq. (5.181) can also be w ritten in the following
form:

V d In v J s (5.185)

Integrating this relation between the points 1 and 2 on an isentrope,. 
we obtain

In Ei
P i

j  kd In v. (5.186)

The value of the adiabatic exponent k  varies with the state param­
eters; it differs considerably for different phases of the substance. 
If the adiabatic  exponent k  is kept constant throughout a m ultitude 
of the system ’s states (between the points 1 and 2), i t  is clear from 
(5.186) th a t

In — =  — A: In (5.187)
P i  V i  v  '

From this relation it  follows, for one, that
pvh =  const. (5.188)

This relation (which is valid provided the adiabatic exponent is 
kept constant) is known as the Poisson adiabatic equation. But if 
in the range of states under consideration the adiabatic exponent 
varies with the state  parameters and we know the behaviour of k
on an adiabatic, we can calculate p 2 in terms 
and v 2 by Eq. (5.186).

5.6.4. The thermodynamic velocity of sound, 
Laplace equation

of the given p r, v1 

a, is defined by the

(5.189)

where p is the density of the substance; since
p =  l/v , (5.190)

we have

II 1 to
Qj

| Q
j 

C 
1̂ (5.191)
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This combined w ith (5.181) yields

a =  Y  kp v ,

and combined w ith (5.165) also yields

a =  v V  1

(5.192)

(5.193)

5.7 Basic Thermodynamic Equations for Flow Processes

5.7.1. In Chap. 1 we noted th a t the equation of the first law of 
thermodynamics for the flow of a liquid or gas is w ritten  thus 
<Eq. (1.16)):

dq =  dh -f- wdw -f- gdz -j- c?Ztech +  ^disst

where w is the flow velocity, z the height, Ztech the technical work 
done by the flow, Zdiss the dissipative work (e.g. the work done by the 
flow in overcoming frictional forces), and g the acceleration of 
gravity.

We recall th a t the heat q in Eq. (1.16) consists of two parts: the 
heat brought into the flow from outside (or rejected from it to the 
surroundings), gext, and the dissipative heat, qAiss; and th a t gdls8 
is equivalent to Zdlss. Hence, we can write Eq. (1.16) in the form 
(1.18):

^7ext =  dh +  wdw +  gdz -f- dZtech*
This equation is valid both w ith and w ithout friction in the flow.

5.7.2. Let us consider a particular case of a flow, when a portion of 
the flow considered is on one level and, therefore, dz =  0 and when 
there is no technical work and this work is not brought into the 
flow from outside (dltech =  0). For this particular case Eq. (1.18) 
assumes the form

rf7ext =  dh +  wdw. (5.194)

For the m ajority of technologically im portant problems the case 
of greatest interest is th a t of adiabatic flow, i.e. a flow w ithout supply 
and rejection of heat from outside (dqext =  0). For th is case (5.194) 
assumes the form

dh +  wdw =  0. (5.195)

This implies that if an adiabatic flow accelerates ( d w >  0), its 
enthalpy decreases (dh < ; 0), and vice versa. Hence, the acceleration 
of an adiabatic flow occurs at the expense of its enthalpy.

Further, Eq. (5.194) combined w ith (1.14a) can be w ritten  as
dqext =  du +  d (pv) +  wdw. (5.196)
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We compare this relation w ith the equation of the first law of 
therm odynam ics in the ordinary form (1.10a)

dq =  du +  pdv.

We ;see th a t Eqs. (5.196) and (1.10a) are essentially  the same, 
only expressing differently the first law of therm odynam ics: (1 .10a) 
represents the law in the most general form (for simple systems) 
while (5.196) specifies the particu lar case where the simple therm o­
dynamic system is a fluid in flow. Then

pdv — d (pv) +  wdw. (5.197)

Taking into account
d (pv) — pdv  - f  vdp, (5.198)

we find tha t
wdw =  — vdp, (5.199)

The above derivation shows th a t Eq. (5.199) is valid for a flow in 
any conditions of addition (rejection) of heat: when there is no fric­
tion, the flow is horizontal and the technical work is zero. This equa­
tion implies tha t if the pressure drops along the path  of flow (dp <  
<C 0), the flow velocity increases (dw^> 0) and viGe versa.

Finally, from (5.195) and (5.199) we see tha t

dh =  vdp. (5.200)

Since (5.195) is valid only for adiabatic flow w ithout friction, the 
same is true for (5.200).

Equations (5.194), (5.195), (5.199), and (5.200) are the basic rela­
tions for horizontal flow w ithout the technical work.

5.7.3. A differential equation very im portant in an analysis of 
adiabatic flow (horizontal flow w ithout technical work) can be 
obtained in the following manner.

The continu ity  of the flow im plies th a t for a sta tionary  flow the 
fluid flow rate  G is the same in any cross section of the flow; G — 
— const. Since for a flow in a channel of any cross section

G =  w ^ /v ,  (5.201)

where 2  is the area of the channel’s cross section, we have for 
G constant

d Z  dv dw
Z v w

In hydrodynam ics this relationship is termed the continuity equation.
9 — 0 4 2 7
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For the case under consideration (horizontal flow without techni­
cal work) this equation can he transformed in the following way. 
From (5.199) we see that

- ~ - = ----^  dp (5.203)

(note tha t (5.199) is valid only for the flow w ithout friction). 
Equation (5.181) for adiabatic flow (s is const) can be w ritten as

<5 -204)

If we substitute (5.203) and (5.204) into (5.202) and assume th a t 
in accordance with the Laplace equation (5.192)

<N<31! (5.205)
we obtain

dl  da—
2 ~  kpw2 a p ’ (5.206)

or, which is the same,

(5.207)

Here M =  w/a is the Mach number (the ratio of the flow velocity 
to the local speed of sound). This equation relates the change in the 
area of the channel’s cross section (for adiabatic horizontal flow w ith­
out friction and technical work) to the change in flow pressure and 
to the Mach number. If in (5.207) we replace dp by (5.204) and com­
bine the result with (5.205), we obtain an equation tha t shows the 
variation of the area of the channel’s cross section with the flow ve­
locity and M:

^ - = ( M 2— 1) - ^ .  (5.208)

Equations (5.207) and (5.208) enable us to analyze a horizontal 
adiabatic flow without the technical work in channels w ith variable 
cross sections.

For subsonic speeds (M <C 1), the convergence of a channel 
(rf2  «< 0) corresponds to a decrease in pressure in the flow along the 
channel (dp •< 0). Here the velocity of a fluid increases (dw^> 0) as 
the channel converges. If the channel diverges (rfE >> 0), the pres­
sure along i t  increases (dp >  0) and the velocity decreases (dw << 0).

For supersonic speeds (M >> 1), the sign of these effects changes; 
namely, if the channel converges (dS <  0), the pressure in the flow 
increases (dp^> 0) and the velocity of the fluid decreases (dw <C 0 ), 
while if the channel diverges (dH >  0), the pressure decreases along 
the flow (dp <  0) and the velocity increases (dw >- 0).
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These modes of acceleration and deceleration of a flow are used 
in well-known devices: subsonic and supersonic adiabatic  nozzles 
and diffusers.

5.7.4. Let us now examine a case im portan t from the standpoint 
of practice of ad iabatic  flow w ithout friction and external work, the 
case of the flow of an incompressible fluid.

Since the flow takes place a t dq — 0. Zdlss — 0, and Ztech =  0, we 
can write Eq. (1.16) as

dh -f- wdw +  gdz =  0. (5.209)

From the equation of the first law of therm odynam ics (1.10a)
dq =  du ~r pdv  

we can see th a t in ad iabatic  conditions
du =  — pdv , (5.210)

and for an incompressible medium (v is constant) in ad iabatic  con­
ditions

du =  0. (5.211)

Next, combining (1.14a) w ith (5.209), we find th a t
du -f- pdv  -f- vdp -f- wdw -f- gdz =  0. (5.212)

If we hear in m ind tha t for an incompressible medium dv =  0 and 
combine this relation w ith (5.211), we obtain for th is particular case 
of an incompressible fluid flow

vdp -)- wdw -f- gdz =  0, (5.213}

or, since v =  1/p,
dp -f- pwdw +  pgdz =  0. (5.314)

This equation, which is w ritten  for the first law of thermodynamics 
for the ad iabatic  flow of an incompressible fluid (without friction),, 
is known as Bernoulli's equation (in differential form); in hydrody­
namics th is equation is derived from Newton’s laws.

5.7.5. In Sections 5.7.2 through 5.7.4 we considered the cases of 
flow im portan t for practice; but these are only particular cases. In 
all these cases we assumed th a t, first, technical work is not performed 
in the flow and is not done on it  and, second, the flow is horizontal 
(except the case considered in Sec. 5.7.4), i.e. dz=  0. Here Eq. (5.195) 
is valid only for ad iabatic  flow, (5.199) for flow w ithout friction, 
(5.200) for ad iabatic  flow w ithout friction, (5.207) for adiabatic  
flow, and (5.208) for ad iabatic  flow w ithout friction.

Let us now form ulate the equation in the most general case, i.e. 
for a flow w ithout the restric tions imposed on the above-mentioned 
relations. To th is end we examine the differential equation of the
9 *
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first law of thermodynamics for a flow in its general form, (1.16), 
and express dh via (1.14a):

dq =  du -f- d (pv) -f- wdw -{- gdz ~f- dl^eĈ  -f- dlÂ ss. (5.215)

Replacing dq by (1.10a), we obtain
vdp -f- wdw -j~ gdz +  ^tech +  ^diss — 0. (5.216)

(We note tha t for the case of horizontal flow w ithout friction and 
technical work this relation is transformed to (5.199).)

The differential dp from Eq. (5.216) can be w ritten, in accordance 
w ith (2.24), as

dp =  { % ) , d v +  <5-217>
Next, according to (4.1),

/ » ? )  = - ( ? L )
\  ds ) v  \  dv ) s ’

while according to (2 .6) the derivative (dT/dv)s can be w ritten as

(5.218)

The derivative (dT/dp)s can then be replaced via Eq. (5.115), which 
can^be w ritten as

(5.219)

If we combine (5.218) with (5.219), we find tha t (4.1) can be trans­
formed to

/ dp \  T_ / _dv_\ / dp \
\ ds ) v cp \dT } p \  dv ) $

From (5.217) it then follows th a t

From (5.191) we see that

( ! a = - ( - ) 2-
Since according to (1.17) for the flow

dq _  dqext -j- dqA[as,

taking into account (1 .20a)

(5.220)

(5.221)

( 5 . 222)

dq =  T ds
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we can w rite1
^ __ dQext 4~ dqd\Ss (5.223)

Finally, we express the differential dv from (5.221) in terms of the 
continuity equation (5.195):

(5.224)

If we consider Eqs. (5.222) through (5.224) and notation (5.118), 
from (5.221) we obtain

v d p =  — G2 — +  —------— (dQext ~f f^dlss)] • (5.225)

Substitu ting this relation into (5.216) and taking into account th a t 
9ciiss =  r̂iiss and li'!a =  M, we obtain

(M2— 1) dw
w

dZ
cP ^9ext ^ tech ( Cp +  fflil ) dldlss fl'a dz,

(5.226)

This equation, obtained by L. Vulis, enables us to draw interest­
ing conclusions about possible means of accelerating the flow.

^  ?ex-1 — 0, Ztech =  0, Zfjjss =  0, and z =  const, Eq. (5.226) is 
transformed to (5.208) which describes the mechanism of change of 
the flow velocity in a standard nozzle (sometimes called geometri­
cal nozzle) discussed in Sec. 5.7.3.

If the cross section of the channel is constant (2 is constant) and 
Ztech =  0? ^iiss =  0, and z =  const, but there is an influx or re­
jection of heat, Eq. (5.226) implies that

(11= -  1 (5.227)

Since always cp >  0 and, as a rule, a>>  0 , it  follows tha t at subso­
nic flow velocities (M <C 1) addition of heat to the flow (dqe^  >  0) 
results in acceleration (dw^> 0), while rejection of heat from the 
flow results in deceleration. Correspondingly, in supersonic flow 
(M >  1) addition of heat results in deceleration and rejection results 
in acceleration. The principle of a heat nozzle, a channel in which

1 Concerning Eq. (5.223) the following question may arise. In Chap. 1 we 
noted that Eq. (1.20a) is valid only for reversible processes. But processes of 
energy dissipation, as a result of which the heat qd\ss is liberated, are essentially 
irreversible. What is the meaning of Eq. (5.223) then? The answer is that it is 
valid for a reversible process; here we tacitly assume that qd\ss is n°t the heat 
liberated as a result of friction but the heat equal in value to <7cuss, which is 
reversibly supplied to the flow from the surrounding medium (apart from the 
heat <7ext brought in from the medium).



134 The Differential Equations of Thermodynamics

addition or rejection of heat results in acceleration of the flow, is 
based on these conclusions.

If 2  is constant and gexl =  0, Zfliss =  0, and z =  const and the 
flow performs technical work (or this work is performed on the flow), 
from (5.226) we obtain

(M2- l ) i§ L= - 4 r 'Mtech. (5.228)

We see tha t in these conditions a subsonic flow (M <C 1) performs 
technical work (for instance, ro tating  a turbine) and is accelerated 
(dw^> 0). Correspondingly, if technical work is performed on the 
flow, this results in deceleration of the flow. In a supersonic flow 
(M >  1) the processes are reversed. These principles are utilized 
in the so-called mechanical nozzle, a heat-insulated channel in 
which a subsonic flow is accelerated at the expense of the work done 
on the turbine-wheel blades and a supersonic flow is accelerated due 
to a blower rotated by an external source.

If 2  is constant and gext =  0, Ztech =  0, and Zfltss =  0 but the 
channel is not horizontal (dz =/= 0), then from (5.226) it follows that

(M 2- l  ) — = - £ * .  (5.229)

This relation implies tha t a subsonic flow of a gas (M <C 1) moving 
upward ( d z >  0 ) is accelerated (dw^> 0) and a supersonic flow 
(M>» 1) moving upward is decelerated. These conclusions are of 
interest when we analyze the processes of natural gas discharge from 
a well (whose section is constant along the height).

If 2 is constant and gext =  0, Ztech =  0, and z =  const and there 
is energy dissipation due to friction in the flow, Eq. (5.226) is trans­
formed to

(5.230)

We note tha t unlike the differentials cZ2, dqext: cZZtech, and dz in 
Eq. (5.226), which can be both positive and negative, the work of 
overcoming frictional forces can only be positive (dldiss^> 0). We 
see from (5.230) tha t a subsonic adiabatic flow w ith friction in a 
horizontal channel w ith a constant cross section is accelerated 
(dw^> 0). Obviously, such flow can be accelerated to sound veloc­
ity , in principle, but cannot exceed it, since we would have to re­
ject heat from the flow and we have already noted tha t Zdlss is always 
positive, in both subsonic and supersonic flow.

Finally, let us examine the case where 2 is constant and ge.\t =  0, 
Zdiss =  0 , and z =  const, but gas consumption in the channel 
varies. We can change the consumption G by flowing or suction of the
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gas through holes in the lateral surface of the channel. For this case 
(G not constant) from (5.201) it follows tha t

^ ' ( 1 4 4 ) -  <5-231>
If we substitute this relation into (5.221) instead of (5.224), we ob­
tain  from (5.216) for the case under consideration

(M2— 1) (5.232)

This relation implies tha t the subsonic velocity of the flow (A1 <C 1) 
increases w ith increasing consumption (dw^> 0 for dG^> 0), and 
the supersonic velocity of the flow (M >* 1) increases with decreas­
ing consumption (dw^> 0 for dG <C 0).

Equations sim ilar to Eq. (5.226) for the flow velocity can also 
be derived for pressure, tem perature, and specific volume of the 
flow of a fluid.



6 The Discontinuities 
of Thermodynamic 
Quantities on Boundary 
Curves

6.1 Crossing Boundary Curves: Salient Points and 
Discontinuities of Thermodynamic Functions

6.1.1. We know that a t different values of the external parameters 
a substance can be in various physical states. These may be the var­
ious phases of a substance (i.e. solid, liquid, or gaseous), the various 
allotropic modifications of a solid substance, the superconducting 
and normal states of a superconductor, the various states in ferro- 
magnets (ferromagnetic and param agnetic), antiferrom agnets, ferro- 
electrics (ferroelectric and dielectric), or liquid helium (helium I 
and helium II).

The curves th a t separate the domains of different physical states 
of a substance on the thermodynamic state  surface of a substance 
are called boundary curves1. Thus on one side of a boundary curve the 
substance is in one physical state, and on the other it is in another 
state. Consequently, when a boundary curve is crossed, the proper­
ties of the substance change. Experiments have shown that this change 
is usually of an abrupt discontinuous nature; many thermodynamic 
quantities undergo a so-called discontinuity of the first kind on the 
boundary curve.

From thermodynamics we know that the chemical potential of a 
substance <p remains continuous while crossing a boundary curve; 
the coexisting phases always have equal values of (p in addition to 
temperature and pressure. As for the other thermodynamic quanti­
ties, their changes depend on the type of phase transition on the 
boundary curve: the discontinuities are either in the first deriva­
tives of the chemical potential (v and s, for instance) and its higher- 
order derivatives or only in the second and higher-order derivatives 
while the first derivatives are continuous (the question of different 
types of phase transitions is discussed in detail in the following 
chapter).

Obviously, if a thermodynamic function undergoes a discontinuity 
of the first kiud while crossing the boundary curve, its antideriva-

1 In thermodynamics it is customary to designate the lines that separate the 
region of a two-phase state of a substance from one-state regions as boundary 
curves (left and right); the other boundary curves (for instance, the line of phase 
transition in a p, ^-diagram) are usually called curves (or lines) oj phase tran­
sition. Naturally, this is not a matter of principle and in the future we will use 
exclusively the term boundary curve.
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tive a t the point of transition through the boundary curve has a' 
salient point. For example, an isentrope in the ^-diagram has a 
salient point where it intersects a houndary curve, while in the- 
(dp/dv)s, u-diagram an isentrope has a discontinuity of the first kind 
at this point (see Fig. 6.1, where (a) is a p,  u-diagram and (b) a 
(dp/dv)s, u-diagram).

6.1.2. We see that on the therm odynam ic state  surface of a given 
substance each boundary curve is uniquely fixed. But if the line is- 
fixed on the state surface, any therm odynam ic quantity  at each'

point of th is line is a function of only one variable. This can be* 
demonstrated by a simple example. Figure 6.2 shows a line in the 
x , y, z space belonging to the surface z (x , y ). If the value of one var­
iable is fixed (for instance, y =  y 0), then, as is clear from Fig. 6.2, 
there is a point on this line, a, uniquely fixed by the other two coor­
dinates (x =  x 0 and y =  y 0). We see that each of the two variables- 
(x and y, x  and z, y and z) is uniquely related to the other. For instance, 
let us examine in p, v, T-coord m ates the right boundary curve 
separating the region of gaseous state  of a substance from the two- 
phase, liquid-vapor, region. If the tem perature T  is given, the va­
lues of pressure p and specific volume v" are uniquely specified at a 
given point on the boundary curve; if p is given, T  and v" are uni­
quely specified; and if v" is given, p and T are uniquely specified.

If we take the projection of this line on any of the three coordinate- 
planes, we see th a t since a therm odynam ic quan tity  on this projec­
tion is, naturally , a function of one variable, its derivative w ith 
respect to th is variable is total (and not partial). Thus, in the v, T 
plane the derivative of v" w ith respect to T is the total derivative 
dv ' /dT , in the n, p plane the derivative of u" w ith respect to p  is the- 
to tal derivative dv'/dp , and in the p, T  plane the derivative of p  
with respect to T is the total derivative dp/dT.
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We can write these derivatives as partia l, but then we must bear 
in  mind tha t the derivatives are taken along the right boundary 
•curve:

dv"  __ / d v  \ dv"  __(  d v  \  d p    / \
d T  V dT j  rii:ht ’ d p  \ d p  / right ' d T  V d T  / boundary*

boundary boundary curve
curve curve

( 6 . 1)

Sometimes we can sec such notation in the literature.
6.1.3. It is interesting to obtain differential equations th a t deter­

mine the value of the discontinuity of a function crossing the boundary 
curve. The general method of obtaining such relations is as follows.

Let us examine Fig. 6.3. Here a-b is a boundary curve on the ther­
modynamic state  surface. The line y =  const formed where the sur­
face intersects the plane y =  const, has a salient point a t m. Hence, 
the  derivative (dz/dx)y changes abruptly  at this point. Obviously 
(intersect the surface by the planes x =  const and z =  const), the 
derivatives (dz/dy)x and (Oy/dx)z change in a sim ilar manner at this 
point.

Equation (2.24) for the total differential of the function z (x, y),

implies tha t if the function changes along the curve a-b, its differen­
tia l can be calculated in two equivalent ways: we can take the partial 
derivatives in (2.24) either on one side of the boundary curve a-b 
n r on the other (in Fig. 6.3 from either above the curve or below it).
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If we indicate the partia l derivatives taken on one side of the 
boundary curve by the superscript (1) and the partial derivatives 
taken on the other side by (2), we can write (2.24) thus

* + (If)!11 (6-2>
or thus

M £ ) > + ( £ ) ‘> -  <6-3>
Hence, we can write a relation for the total derivative dz /dx  in

the form
dz __ /
dx V

dz \ (1) .
~dT)y +

/ dz \ (!) dy 
\ dy ) x dx (6.4)

or in the form
dz __ /
dx \ - V 2' +a* la

/ dz \<2) dy 
[ dy 1 x dx (6.5)

Here (dz/dx)yU and (dzldx)\ are the partial derivatives taken a t the 
point of intersection of the line y =  const w ith the boundary curve,

Fig. 6.4

the first of them taken on one side of the curve and the second on 
the other (Fig. 6.4a); (dz/dy)]c and (dz/dy)l are the partia l deriva­
tives taken a t the point of intersection of the line x  =  const w ith 
the boundary curve on one or the other side of the curve (Fig. 6.46); 
dy / dx  is the total derivative of the function y (x) along the boundary 
curve (Fig. 6.4c).

We note once more tha t the result of calculating the derivative 
is independent of which of the two absolutely equivalent relations
(6.4) or (6.5) we choose.
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If we equate the right-hand sides of these relations, we obtain
I dz \ U )  , /  dz \ ( 1 )  dy  /  dz \ ( 2 )  / d z \ ( 2 )  dy / r  rv
I Ox j y  +  I dy Jx dx ~  [ d x  j y  ' ( d y  l x  dx ‘

whence
/ j5 z  \ ( 1 ) _  /  d z  \ ( 2 )  
\  d x )  y \  dx / y dy / .v V dy ) x J dx (6-7)

This relation determines the value of discontinuity of the deriva­
tive (dz/dx)y crossing the boundary curve. I t enables us to calculate 
the value of the discontinuity of any therm odynam ic function w ith  
a discontinuity on a boundary curve.

6.2 Discontinuity Equations for Thermodynamic 
Functions on Boundary Curves

6.2.1. Instead of z, x  and y we can take another set of therm odynam ­
ic quantities in Eq. (6.7). For instance, if we assume z =  s, x  — T  
an(l y — then from (6.7) we obtain an equation for the value of 
discontinuity in the isobaric heat capacity cp on a boundary curve; 
if we take z =  T , x =  p,  and y =  h, then we can calculate the dis­
continuity in the Joule-Thomson coefficient on the boundary curve; 
if z =  9 , x =  T, and y =  p,  then (6.7) yields an im portant equation 
relating the values of discontinuities in s and v, and so on.

The analysis of Eq. (6.7) is of the greatest practical interest for 
the cases where x, y, and z are replaced by specific entropy s, specific 
volume v , tem perature T, and pressure p.

We can easily see that x, y and z may be chosen from 5, u, T , and 
p by 12 different ways listed in Table 6.1.

TABLE 6.1

z X y z X y z X y z X !/

s T p T p V V T p p T V
s T V T p s V T s p T s
s p V T V s V p s p V s

I t may seem that the number of possible ways is twice that given 
in Table 6.1, since, for instance, together with z = s , x = T , y = p  
the variant z =  s, x = p, y =  T is also possible. The point is th a t 
because Eq. (6.7) is symmetric in x  and y, we obtain the same result, 
by a simple interchange of x  and y.

6.2.2. Let us see what relations we can derive from Eq. (6.7) 
for each of the variants given in Table 6.1.
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We introduce the following notations for the discontinuities of 
the derivatives (dzfdx)y and (dz/dy)x:

dz \(D  / dz \<2)
y

and

(6 . 8)

I dy ) x  \ d y  l x  \  dy j x *
(6.9)

(1) z =  s, x  =  T, y =  p. Equation (6.7) then assumes the fol­
lowing form:

A(^)„=-A{ )̂r -W -  < 6 - 1 0 >

Since according to (5.100a)
/  ds  \  __ c p
[ i f  } p ~ T

and according to (4.4)

(J f . )
I  dp I t  \  dT I v  ’

Eq. (6.10) transforms to

t o * - ™  ( % ■ ) , & •
(2) z =  s, x  =  T, y  =  v. Here from (6.7) we obtain

A(£ ) .=  - M # ) rlr-
Bearing in mind tha t according to (5.101a)

I ds \ __ £̂r|_
I  I T ) v ~ ~ T

and according to (4.3)
t d s _ \  / j ? p  \
V  dv ) t  \ dT I v 5

from (6 .12) we obtain

t o ’ = - T A ( w ) . J r -

(3) z =  s, x  =  p, y =  v. Equation (6.7) transforms to

( 6 . 11)

( 6 . 12)

(6.13)
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(6.17)

Since according to (4.1a) 

and according to (4.2a)

from (6.14) it follows that

4  ( £ ) . = 4  ( & ) . & •  ( 6 -15)

(4) z =  v, x =  T, y =  p.  Here Eq. (6.7) assumes the form

4 ( £ ) , =  - 4 ( & ) t & -  <6-16>
(5 ) z  =  v, x = T , y  =  s. From (6.7) we obtain

Since according to (4.3a)

(2l ) = ( J L )
\ ds IT \  dp I v ’ 

from (6.17) it follows that
A /  dv  \  a (  dT \ ds
^ \ ~ d T ) s ~ ~ ^ \ ~ d p ) v ~dT'

(6) z =  v, x =  p, y =  s. Equation (6.7) transforms to

4( £ ) .= - 4 (2 ) ,£ -
Bearing in mind that in accordance w ith (4.2)

= l * L )
I ds IP \ dp ) s ’

from (6.19) we obtain

4 ( | t).= - 4 (£).& - <6-20>
(7) z =  T, x =  p, y =  v. Here Eq. (6.7) assumes the following 

form:

4 ( £ ) . = - 4 ( S U -  <«•«)
(8) 2 =  T , z  =  p, y =  s. From Eq. (6.7) we obtain

\ dp ) s I ds )p dp '

(6.18)

(6.19)

( 6 . 22)
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Since, as it follows from (5.100a),

( f . )  = - L ,\  as  I p c p  ’

we can transform (6 .22) to

A( £ ) . = - rA(£ )£ -
(9) z =  T, x  =  v, y =  s. Here Eq. (6.7) transforms to

Since, as we see from (5.101a),
d T  \  T_
ds  ) v c v ’

from (6.24) it  follows tha t

(6.23)

(6.24)

(6.25)

(10) z — p, x =  T, y — v. Here (6.7) assumes the following- 
form:

a ( -S 7 - ) .=  - a ( - & ) t I t - <6 '26>
(11) z =  p, x =  T, y =  s. From Eq. (6.7) we obtain

M
d p  \ 
d T  I s =  - A ( 4 f )

ds  

T d T  * (6.27)

Since according to (4,.4a)
/ d p \ ( d T \
\  ds I t  \  d v  1 P ’

from (6.27) we have

A m = & ( d T )s \  d v  / p
ds

~dT • (6.28)

(12) z =  p,  x =  v , y =  s. Here Eq. (6i.7) assumes the form

A (— )I m ) -= - A ( - f )
ds  

v dv
(6.29)

Bearing in mind tha t according to (4.1)

from (6.29) we obtain

(6.30)
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We have 12 equations that determine the discontinuities in the 
derivatives of thermodynamic quantities; namely, the derivatives 
■containing s, v, T , and p. Many of these equations are widely used 
in thermodynamics, and some we will use in the next chapter.

6.2.3. If we examine the above equations for discontinuities of 
thermodynamic quantities on boundary curves, we can see tha t the 
equations containing the same values of to tal derivatives of therm o­
dynamic quantities along the boundary curve can be in pairs. For 
instance, both Eq. (6.11) and Eq. (6.16) contain dp/dT , Eqs. (6.13) 
and (6.26) contain dv/dT, and so on. Grouping the equations in pairs 
according to this criterion and excluding the same to tal derivatives, 
we obtain a new set of useful equations.

If we write Eq. (6.11) as

and Eq. (6.16) as

(6.31)

(6.32)

and equate the right-hand sides of these equations, we obtain

(6.33)

In a sim ilar manner, if we exclude dv/dT from (6.13) and (6.26), 
we obtain

Acc =  T (6.34)

Excluding the to ta l derivative ds/dp from (6.20) and (6.23), we
have

(6.35)

If we exclude ds/dv from (6.25) and (6.30), we find that

A 1> ( -£ - ) .]*

rA(# ) .
(6.36)
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Excluding dv/dp from (6.15) and (6.21),; we obtain

A( ^ ) , AB a = - AH£LA(^),- ^ . 37,

Finally, if we exclude ds/dT from (6.18) and (6.28), we obtain 
an equation th a t coincides w ith (6.37).

Equations (6.33) through (6.37) relate the values of discontinuities 
of different therm odynam ic quantities on the boundary curve.

6.2.4. Equations (6.10) through (6.30) can easily be grouped in 
pairs according to another criterion, namely, by the values of dis­
continuities of the same therm odynam ic quantities. For instance, 
both Eqs. (6.11) and (6.16) contain A (dv/dT)p, Eqs. (6.13) and (6.26) 
contain A (dp/dT)0, and so on. Grouping the equations in pairs and 
excluding the same values of discontinuities, we obtain another set 
of useful equations.

If we exclude A (dv/dT)p from (6.11) and (6.16), we obtain

<6-38>
If we exclude A (dp/dT)v from (6.13) and (6.26), we obtain

a ^ t a { ^ ) A M -  <6-39>
If we exclude A (dT/dp)s from (6.20) and (6.23), we find that

a (w ) = t - a ( j S - U w ) 2> (6-4°)
while if we exclude A (dT/du)s from (6.25) and (6.30), we have

a ( - ) = - t - a ( £ U £ ) 2 - <3-«>
Excluding A (dv/dT)s from (6.15) and (6.18), we obtain

A m , £ = - A ( ^ ) „ £ >  <6 -4 2 >

and excluding A (dT/dv)p from (6.21) and (6.28), we obtain the same 
relation.

Sim ilarly, if we exclude A (dp/dT)s from (6.15) and (6.28), we 
obtain

A( J R £ = AB f ) ,J -  <3-43>
while if we exclude A (dT/dp)v from (6.18) and (6.21), wo obtain the 
same relation.

Equations (6.38) through (6.43) complete the group of basic equa­
tions relating the values of discontinuities of different therm odynam -
1 0 - 0 4 2 7
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ic q u a n titie s  crossing boundary  curves and to ta l de riva tives of the 
therm odynam ic q u a n titie s  along these boundary  curves.

6 .2 .5 . W e know th a t  if we consider a therm odynam ic  system  w ith  
£ a generalized force and w a generalized coord ina te , then  the equa­
tions ob tained  above can be w ritte n  in the follow ing form.

The first group of re la tions is
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\ dw J s

4 © , 4 © r - 4 ( f l 4 ( l ) , '  <6-60>
Finally , the th ird  group of relations is

&cl — T A  ( %)T \ i T  I ’ (6.61)

Acu; —= r A ( - i ) r
/ dw \ 2
w r  / ’ (6.62)

m m = i M M U 4 f . (6.63)

M i r ) ' = T M 1
\ / dw \ 2 
/* I ds } ’ (6.64)

M 4 ) , M = - M
’ dT \ ds 
, /» d?1 ’ (6.65)

M M ■). t  - A  (■
ST \ ds 

}t dT (6 .66)

These equations give the values of the discontinuities of thermo­
dynamic quantities on the boundary curves of complex systems.

10+



7 Phase Transitions

7.1 A General Survey

7.1.1. As is known, a phase is a homogeneous region in a hetero­
geneous system and phase transition  is the transfer of m atter from 
one phase to another phase coexisting w ith the first. M atter can be 
in a gaseous, liquid, or solid phase; some solid substances have several 
phases.

A thermodynamic analysis of the conditions of phase equilibrium  
shows th a t if two phases are in equilibrium , then the tem perature, 
generalized force, and chemical potential of these m ust be equal:

T x =  T 2, (7.1)

cF
tf II

tF
?

LO (7.2)

<Pl =  <P2t (7.3)

where the labels 1 and 2 refer to the first and second coexisting phases.
For the particular case of systems performing exclusively work 

of expansion (below we m ainly discuss such systems), condition 
(7.2) may be w ritten as

P i =  Pz- (7-4)
Equations (7.2) and (7.4) imply th a t if the phase transition  occurs 

at constant pressure, the tem perature also remains constant in this 
process.

We note tha t conditions (7.2) and (7.4) are m et only when the 
interfacial surface has no special properties th a t m ust be taken into 
account. But if the interfacial surface has such properties (in par­
ticular, surface tension), we can write condition (7.4) thus:

P\ =  P2 +  P*> (7.5)

where p* is the additional pressure on the liquid phase caused by 
surface tension. The value of p* is determined by the well-known 
Laplace equation

P* — a (7.6)
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where a is surface tension, and px and pn  are the main radii of cur­
vature of the interfacial surface. In the case of a plane (pT =  pn =  
=  oo), p* vanishes and condition (7.5) coincides with (7.4). In the 
case of a curvilinear interfacial surface, there appears a pressure 
difference between the coexisting phases defined by Eq. (7.6).

7.1.2. The region on the therm odynam ic state  surface (and, con­
sequently, on phase diagrams, which are projections of this surface 
on the coordinate planes) inside which the substance is in the form 
of a m ixture consisting of two coexisting phases is known as a two- 
phase region. This region is separated from single-phase regions by 
boundary curves, which connect the in itia l and term inal points of 
the phase transition in phase diagrams. For the liquid-vapor phase 
transition the boundary curve on the side of the liquid is usually 
called the left boundary curve and th a t on the side of the vapor the 
right boundary curve.

We have already pointed out th a t since inside the two-phase re­
gion an isobar and isotherm coincide, it is clear that

d p
dv  ,

(7.7)
d T  1 
d v  i

),wo-p|, = 0 _
1 p

(7.8)
d T  ' 
ds  ,

) two-p” = 0 ,
I p

(7.9)

d p  ’
ds .

\ two-ph 
! T

(7.10)

Thermodynamic quantities on the boundary curves are functions 
of only one variable; for instance, the specific volume of a liquid 
on a boundary curve, v ' , is uniquely 
determined by the tem perature or 
pressure of the phase transition.

7.1.3. In the p,  ^-diagram  the two- 
phase region is sim ply a line (see 
Fig. 7.1); for the case of the liquid- 
vapor phase transition  th is line is 
termed the saturation line, or satura­
tion curve. The derivative dp/dT  is an 
im portant therm odynam ic quantity , 
which gives the slope of the phase 
transition  curve in the p,  T-diagram.
For the liquid-vapor and solid phase- 
vapor (sublimation) phase transitions
dp/dT  is always positive. For the solid phase-liquid phase transition 
(melting) th is value can be positive for one substances and negative 
for another. The relationship between the second derivatives of

Fig. 7.1
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dp/dT  w ith respect to tem perature and oi.dT/dp w ith respect to pres­
sure is defined (in accordance w ith (2.17)) by

dT2 \  dT I dp‘ ' ‘ ' '

(we w ill use this relation in the future).
7.1.4. In a phase transition the quantities th a t are the first deriv­

atives of a therm odynam ic potential (namely, specific volume v , 
entropy s , internal energy u, enthalpy h , and free energy /) change 
discontinuously from the value on one boundary curve to th a t on 
another. We discuss equations for phase transitions using the nota­
tions for the liquid-vapor phase transition . We m ust bear in mind, 
however, th a t these relations, according to their physical meaning, 
are of a general character and valid for any phase transitions. Let 
us assume th a t the prime on a symbol refers to the corresponding 
quantity  on the left boundary curve and two primes to th a t on the 
right boundary curve; when a boundary curve is not indicated, the 
quantity  is labeled by a “sigma”, a.

7.1.5. The quantities th a t are the first derivatives of a potential 
are known to be additive inside the two-phase region:

ytwo-ph =  v > {\ — x) +  v"x, (7 .12)
stwo-ph =  5' (1 _  3) _|_ s«Xj (7.13)
utwo-ph — u ' (1 — x)4 -u"x,  (7.14)
/̂ two-ph = h ’ (l  — x) +  h"x, (7.15)
/two-ph =  / '  (1 — x) +  f ”x, (7.16)

where x  is the so-called degree of dryness of a two-phase m ixture, 
which is the ratio  of the mass of dry saturated vapor in the m ixture 
to the to ta l mass of the m ixture. Equations (7.12) through (7.16) 
imply th a t the degree of dryness can be expressed thus:

x  = Vt W O - p h ___v r

v’ — v’
stw o-ph_s 

s" — s'
litw o-ph_u> 

u" — u'
/jtw o-ph_fe,

h"—h’
^two-pll_

v - r (7.17)

7.1.6. Specific quantities associated only w ith a phase transition 
curve are: the heat capacity along the boundary curve,

(7.18)
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where d sJ d T  is the total derivative of entropy w ith respect to tem ­
perature along the boundary curve, and the heat capacity of the 
two-phase region w ith the degree of dryness kept constant,

These concepts can be useful in analyzing processes in two-phase 
systems. Speaking of cs, we note th a t ds'IdT is always positive and, 
consequently, c’s is always positive. But ds"/dT <  0, as a rule, and 
so cl <  0.1

7.1.7. We note in conclusion th a t the peculiarities in the therm o­
dynamic properties of the two-phase region result, as we w ill see 
from the following sections, in a wide range of interesting and ele­
gant differential equations describing these properties.

7.2 The Clausius-Clapeyron Equation and Its Analogs

7.2.1. As we have noted, coexisting phases have equal chemical 
potentials <p, but the specific entropy s and the specific volume v 
of the substance in a phase transition change abruptly. I t  is in te ­
resting to obtain a relation th a t connects the values of the disconti­
nuities in s and v in phase transition.

To do this, we use the general equation (6.7) for the values of the 
discontinuities in a transition across a boundary curve,

/ _5z_ \a)  I_dz_y2)   r / dz \(1) / dz \(2)-j dy
\ dx Iy I  dx )y  L I  dy ) x  \ dy )x  J dx

If we set z =  <p, x  =  T , and y =  p ,  we obtain

(W -(# - r= - [ (W -( - s - ) r j - s -  <7-2°>
Since (see (3.35a) and (3.36a))

“ d ( Z  ) t - v •
(7.20) assumes the form

s(t) — 5(2) = i f - , (7.21)

dp j(2) — s(*) (7.22)dT vi2) — ’

1 For certain substances (some hydrocarbons, for one) ds"/dT passes through 
a maximum. Consequently, for such substances c'g changes its sign at that point 
on the right boundary curve at which s" attains its maximum.
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where dp/dT is the to tal derivative of the pressure with respect to 
tem perature along the transition curve in the p,  ^-diagram , and 
s(2) and s(1) the entropies at the point of phase transition on the right 
and left boundary curves.

This equation, which relates the slope of the p, T transition curve 
and the discontinuities in entropy and specific volume at the point 
of transition, is known as the Clasius-Clapeyron equation.

Since, as we have noted in the preceding section, isotherms and 
isobars coincide in a two-phase region, i.e. a t T =  const, p is always 
constant, from (3.28a) w ritten as

T ds =  dh — vdp,

i t  follows th a t here
T (si2) _  sCD) -  hw — hm,  (7.23)

where h (2) and hW are the enthalpies of the substance at the point 
of transition on the right and left boundary curves, respectively. 
The discontinuity in enthalpy in a phase transition is termed the 
heat of phase transition and is usually w ritten as

r =  M2> — hm.  (7.24)

Since from (7.23) and (7.24) it  follows th a t
s<2> -  sW =  r / T , (7.25)

we can write the Clausius-Clapeyron equation as

1 l r =  Ti vW — vW) ' C1-2^)

The Clausius-Clapeyron equation describes different phase tran­
sitions, such as m elting, vaporization, and sublim ation.

7.2.2. If we examine a phase transition  in a thermodynamic sys­
tem performing work other than work of expansion, i.e. a system in 
which the generalized force is the param eter |  and not pressure p 
and the generalized coordinate is the param eter w and not specific 
volume vy we can obtain an equation sim ilar to the Clausius-Clapey­
ron equation.

If in Eq. (7.26) we set z =  cp*, x =  T, and y =  £, we obtain 

/ dcp* \ 0 )  / <5<f* \(2) __ r /  dcp* \ (D  / dcp* \ < 2 n  dl
\~d7r ' ) l  — _ L I U T I t  ~  \ ~ d T l T  J I t  ;

taking into account tha t according to (3.75a)

( - n = -



and according to (3.77a)
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<?cp*' \  

W / T
=  u\

we obtain
d£ _  «(2) —st1)
d T  ~  m(2) — (7.27)

Just as we did w ith the Clausius-Clapeyron equation, 
write Eq. (7.27) as

dh, _______ r______
d T  ~  T ( w W - w W )  5

we can 

(7.28)

where d t /dT  is the to ta l derivative of the generalized force £ with 
respect to tem perature along the transition curve, and (w(2) — w(1)) 
the value of the discontinuity in the generalized coordinate at the 
point of phase transition. Obviously, for such thermodynamic sys­
tems Eqs. (7.27)-(7.28) play the same role as the Clausius-Clapeyron 
equation for simple systems.

If we want to pass from the general equation (7.27), or (7.28), 
to the equation for a given system, we m ust replace £ and w by the 
values of generalized force and generalized coordinate for the given 
system.

Let us consider, for example, the phase transition of a supercon­
ductor from the superconducting state to the normal in a magnetic 
field. We recall tha t for the thermodynamic system, i.e. a magnetic 
substance in a magnetic field, the external magnetic field strength 
H  is the generalized force and the m agnetization / is the generalized 
coordinate. Hence, from (7.28) we can see tha t the analog of the 
Clausius-Clapeyron equation for such a system is

d H c cj
d T  T  (/norm — /super) ’

(7.29)

where dHcr/dT  is the slope of the transition curve in the H , T-dia- 
gram (HCT is the critical m agnetic field for a given superconductor), 
q is the heat of phase transition of the superconductor from the super­
conducting state to the norm al, and /norm and / super are the values of 
specific m agnetization in the normal and superconducting phases, 
respectively.

We know th a t the (mass) specific m agnetization of a superconduc­
tor in the superconducting state  is given by the formula

/super —
k'super/^ cr 

liZl (7.30)

where z^uper is the specific volume of a superconductor in the super­
conducting state. The specific m agnetization of a superconductor in 
the norm al state, / norm, is negligible as compared w ith / super and
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we may neglect it  in calculating the difference (7norm — 7 
Bearing th is in mind, from (7.29) we obtain

dHcj*  4ji<7
dT T vSUp6TH CT (7.31)

This equation for the phase transition in a superconductor was first 
obtained by W. Keesom in 1924 and is sim ilar to the Clausius- 
Clapeyron equation for ordinary systems.

Since the heat of phase transition , q, is positive, from (7.31) it 
follows th a t always

— ^ < 0 ,  (7.32)

i.e. the critical magnetic field strength of a superconductor increases 
as the tem perature drops. This conclusion corresponds completely 
to experim ental data on the tem perature dependence of H cr.

7.3. The Phase Transition Equation 
at Different Pressures in the Phases

7.3.1. For practical applications the cases when the coexisting 
phases have different pressures are very interesting. One example is 
the phase equilibrium  w ith a curved interfacial surface; here the 
pressure difference between the liquid phase and the vapor phase, 
p * , is given by the Laplace equation (7.6).

Let us now formulate the relation for such phase transitions, 
sim ilar to the Clausius-Clapeyron equation for ordinary cases.

We note th a t the required relation, unlike the Clausius-Clapeyron 
equation, m ust relate the derivatives dpJdT  and d p J d T , where p x 
and p 2 are the different pressures in the coexisting phases; it is clear 
tha t in the general case the variation of p x and p 2 with tem perature 
is not the same (i.e. the derivatives dpJdT  and dp Jd T  are not equal). 
This peculiarity does not enable us to use Eq. (6.7) directly, as was 
done w ith the Clausius-Clapeyron equation. Nevertheless, we can 
easily derive the required relation.

Since on the entire transition curve, in accordance w ith (7.3),

Ti =  <P2,

the to ta l derivatives d<p/dT taken for each of the two phases along 
the transition  curve are equal, too:
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Next, from (2.8) it follows that
dcp! ___ /  <9<P \ (1)
dT m :+ m (1) dp1

dT

and

( g(p Y 2) dp2
dT \ dT Ip ^  [ dp I t dT

(7.34)

(7.35)

We note once more tha t the right-hand parts of these relations con­
tain  different pressures of the coexisting phases.

If we combine (7.33), (7.34) and (7.35) w ith (3.36a), (3.35a), and 
(7.25), we find that

< '.4 £ - =  4 - -  (7-36)Vz dp2
dT

This equation, resembling the Clausius-Clapeyron equation to some 
extent, relates the quantities dp/dT  for the coexisting phases at 
different pressures. If the pressures are the same, Eq. (7.36) auto­
m atically transforms to the Clausius-Clapeyron equation (7.26).

7.3.2. Now we consider the case where the tem perature of the 
equilibrium  phases is kept constant, while the pressure in one of the 
phases increases. Let us see whether the pressure changes in the other 
phase, and if it  does, w hat is the law?

Since, obviously (see (2.8)),
dp2
dTx

dp2 dp i
dpi  dT ’

we can write Eq. (7.36) as

v dp 2 
2 d p x

v, = dT
T dpi

(7.37)

(7.38)

If, as we noted above, the tem perature in the coexisting phases is 
kept constant (dT =  0), from (7.38) it follows tha t

/ dPi \ _  f>i
I dpi JT V2 (7.39)

This im portant relation, known as the Poynting equation, implies 
tha t if the pressure in one of the coexisting phases increases (with T 
kept constant), the pressure in the second phase increases, too, and 
the change in pressure in the coexisting phases is inversely propor­
tional to the specific volumes of these phases.

If the two coexisting phases were at the same pressure p 0 and then 
the pressure in one of the phases increased to p x, the increase in pres­
sure in the second phase (from p 0 to p 2) would be

P i

p > - p ° =  I  { ^ ) r d p "
P 0

(7.40)
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whence in accordance w ith the Poynling equation
pi

Pz — Po= \-~~dPi.  (7.41)
J  v 2 

PO

If the ratio v j v 2 does not change considerably with pressure (this 
is usually the case), we can write (7.41) to an approxim ation suffi­
cient for practical calculations as2

Pz — P o ^ ^ i P i  — Po)- (7.42)
v  2

Next, if we denote the pressure difference between the coexisting 
phases by

P* =  Pi — P2, (7-43)
from (7.42) it follows that

Pi =  Po~\— P*, (7.44)v2—

or, which is the same,

P2 =  Po+ V\  p*. (7.45)V2--

These equations relate the quantities p x, p 2, p * , and p 0.

7.4. Isolines in a Two-Phase Region in the p , T  Plane

7.4.1. Now we consider a particular problem im portant for the 
subsequent presentation on the behavior of isolines inside a two- 
phase region, namely, the isolines v =  const, s =  const, u =  const, 
h =  const, and /  =  const (we recall that these isolines have a salient 
point on the boundary curve in the event of a transition from a one- 
phase region to a two-phase region). In other words, we wish to cal-

2 If we are dealing with cases where one of the coexisting phases is the vapor 
phase, we must not confuse the statement about the weak dependence of the 
ratio v j v 2 on px with the statement about the strong dependence of v2 (specific 
volume of the vapor phase) on p 2.

From (7.39) we see that if at liquid-vapor equilibrium the pressure in the 
liquid (px) increases considerably, the pressure in the vapor phase (p 2) changes 
only slightly, which is due to the great difference between the specific volumes 
of a liquid and its vapor. Therefore, here v2 changes comparatively little because 
p 2 changes little (though p x increases considerably) due to the low compressibility 
of the liquid. We see that in the case of the liquid-vapor (or solid-vapor) equi­
librium the ratio v j v 2 changes only slightly with p v  As for the case of the 
solid-liquid equilibrium (in which due to the proximity of the values of vx 
and v2 the change in pressure in one of the phases results in a commensurable 
increase in pressure in the other phase), the ratio v j v 2 changes slightly with an 
increase in px simply because of the low compressibility of both phases.
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culate the partia l derivatives (dp/dT)v, (dpldT)s, (dp/dT)u, (dp/dT)h , 
and (dp/dT)f on the two-phase side of the boundary curves.

The problem is solved in the following way. In accordance with 
Eq. (G.5), the relation giving the behaviour of the total derivative 
of pressure w ith respect to tem perature along the saturation line 
can be w ritten thus:

dp _ (  dp \ two-ph / dp \ two-ph dy
dT — \ dT ) y +  I dy I t dT '

Here (dp/dT)lW0~ph is the partial derivative taken at the point of 
intersection of the line y =  const w ith the boundary curve on the 
two-phase side of this curve; sim ilarly, (dp/dy) ^ ° 'ph is the partial 
derivative taken at the point of intersection of the isotherm with 
the boundary curve on the two-phase side of the curve, and dyldT 
is the to tal derivative along the boundary curve. In this equation 
y  can be taken as v, s, u , h, /, and so on. Let us see how we can trans­
form Eq. (7.46) for different specific values of y.

7.4.2. If y =  v, from (7.46) it follows th a t

dp I dp \ two-ph / dp \  two-ph dua '
dT ~ \  dT j v  +  \ dv I t dT \ • )

Since on both boundary curves d v J d T  becomes infinite nowhere 
except at the critical point, taking into account (7.7), from (7.47) 
we obtain

dp __ / dp \  two-ph
l f ~ ~  \ d T  Jv (7.48)

Hence, inside the two-phase region on the p,7'-diagram  an isochore 
coincides w ith the transition  curve.

7.4.3. Assuming y — s, from (7.46) we have
dp
dT

[  d p  \  two-ph / d p  \  two-ph d s a 

\ ~ d f ~ ) s  ^ \ ~ ^ ~ ) t  ~dT~m
(7.49)

Since in accordance w ith (4.4a)

it  follows that
d p  l  d p  \ two-ph j  d T  \ two-ph d s a 

d T  ~ \  d T  J s ~  \  d v  J p d T  * (7.50)

Since dsa/dT becomes infinite only at the critical point, from (7.8) 
we find that

d p  __ (  d p  \ two-ph
~ d T ~ ~  \  d T  ) s

(7.51)



i-e. inside the two-phase region on the p ^ -d ia g ram  an isentrope 
also coincides with the t r a n s i t i o n  curve

7.4.4. For y =  u we can write Eq. (/.46) as
dp I dp \two-ph , j p _ y v o - Vh dUc

■ = ( ' i r ) u  ^  \  d u  I t
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d T  \  d T  

Since in accordance with (2 .6)

d T (7.52)

(7.53)/  \  - ( J E - . )  (
\ ~d u~l T  \ dv >T ' du 

and in accordance w ith (5.2)

(-£-)r = r (TH.-pj
it follows that, taking into account (7.48), we can transform (7.52) to

/ dp \ two-ph 
i two-ph \ dv I td p

1f~ d p
d u a

d T
(7.54)

d T

The quantity d u J d T  on the boundary curve becomes infinite only 
at the critical point. Hence, taking into account (7.7), we obtain

d p  _ /  d p  \  two-ph
I t  I d T  l u

(7.55)

i.e. inside the two-phase region on the p.T’-diagram a line u =  const 
coincides with the transition curve.

7.4.5. If Ave put y =  h, we can write Eq. (7.46) as
d p  _  / d p  A two-ph / d p  \ two-ph d h a

I d T  J h \  dh  ) td T  \  d T  

Since in accordance w ith (5.11)

Eq. (7.56) can be transformed to

d T
(7.56)

d p
d T

two-ph
+

y.wo.p » - r  ( - $ - ) ;
_ d h G 

d v  \  two-ph d T (7.57)

The quantity  d h J d T  becomes infinite only at the critical point; 
at all other points on the boundary curves it has a finite value. 
Taking this into account and bearing in mind that in accordance 
Avith (7.8)

/ d v  \  two-ph
V d T  I p =  00 >
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from (7.57) we obtain
d p d p  \ two-ph
d T

(7.58)

i.e. inside the two-phase region on the p ^ -d iag ram  an isenthalpic 
curve also coincides w ith the transition curve.

7.4.6. Finally, if we assume that y =  /, from (7.46) we have
dp ( dp \ two-ph / dp  \ two-ph df„

\ dT ) f  ~ M  df I td T

or, which is the same,
d p  _  I d p  \ two-ph
d T  ~  I d T  I f

d T

df a

(7.59)

df  \ two-ph d T (7.60)
■ ( - ^ _ y

\ dp J t  

Bearing in mind that
/  =  u — Ts,

we find that

( - f r ) r  =  ( - 5 r h - r ( - ^ h -  <7 6 1 >
From (7.53) it follows that

( - 0 - ) r - ( - S - ) r H s r ) , -  <7' 62>
Hence, if we take into account (5.2), we find that

B r h = [ r H R - H B r ) x -  <7-63>
In accordance w ith (4.4),

\  d p  }  T  \  d T  )  p ‘

Substitu ting (4.4) and (7.63) into (7.61), we obtain

F H = [ r ( ^ ) . - * ] ( - g - ) , + r ( - f r ) , >  <7 -64>

whence, after simple transformations and taking into account the 
fact tha t

we find tha t

( dp \ ( dv ) / <dv \
\  d T  ) v \  d p  J t  I d T  I p  ’

( i l r - ' l i l - (7.65)



160 The Differential Equations of Thermodynamics

Then from (7.60) we obtain
d p  (  d p   ̂two-ph I I  d p   ̂two-ph d f a

d T  ~  {  d T  ) f .  p ~  \  d v  ) t  d T  * (7.66)

Since the quan tity  d f J d T  everywhere on the left and right bound­
ary curves (except at the critical point) is finite, from (7.66), w ith 
due regard for (7.7), it follows tha t

d p  (  d p   ̂two-ph
W ~  [  dT  J f

(7.67)

i.e. on the p.T-diagram  a line /  =  const also coincides w ith the tran ­
sition curve inside the two-phase region.

7.4.7. Thus, from (7.48), (7.51), (7.55), (7.58), and (7.67) it follows 
that

d p  [  d p  \  two-pli _  f  d p  \  two-ph _  f gp  ^two-ph
p T  ~ \  d T  ) v  ~ \  d T  I s  ~  [  d T  J u

I d p  \  two-ph / d p  \ two-ph 
=  = ( — )i  ’ (7-68)

i.e. all the isolines inside the two-phase region on the p.T’-diagram 
coincide w ith the transition curve. This is not surprising, since if

Fig. 7.2

we consider the thermodynamic state surface of a substance in differ­
ent coordinate systems—in tlie p,v ,T  space as well as the s,T ,p  space 
the u,T,p  space, h,T,p  space, and the f ,T ,p  space—we see tha t the 
two-phase region is projected onto the p ,T  plane and becomes the 
transition curve. It is clear that any lines passing inside the two- 
phase region in other coordinate planes coincide with this curve.

7.4.8. Unlike the quantities v, s, u, /la n d /, which change discontin- 
uously in a phase transition, the chemical potential cp for the coexist­
ing phases is the same. Therefore, there is no two-phase region as 
such on the thermodynamic state surface of a substance in the cp,T,p  
space but only a line of the phase transition. Its projection on the 
p ,T  coordinate plane will naturally be the same p ,T  transition curve
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as in the previous cases. Its projections on the cp, T and cp,p coordi­
nate planes w ill also be lines (Fig. 7.2 a and b shows the cp versus T 
and cp versus p  curves along the transition line).

We see th a t a line cp =  const on the p.T -diagram  intersects the 
transition  line. In  general the line cp =  const has a salient point a t 
the intersection w ith the transition curve. This results from the 
following simple reasoning.

I t  is obvious th a t

( - J H — B H / H H -  <7-69>
Since in accordance w ith (3.35a) and (3.36a) 

it follows tha t

Hence, at the intersection of the line cp =  const w ith the transition
curve on the p ^ -d ia g ra m  on 
phase 1),

the left of the transition curve (in

/ dp ’\ (l) s(U (7.71)
I dT ,)tp yO) ’

and on the right of th is curve (in phase 2),
( dp \ (2) s<- 2> (7.72)
\ dT / tp U<2> *

Since in general
S<1) y(l> 

y(‘U ’ (7.73)

it is evident th a t the line cp =  const has a salient point at the point 
under consideration (see Fig. 7.2c).

7.5 Discontinuity Equations for Thermodynamic
Quantities on the Boundary of a Two-Phase Region

7.5.1. As we have noted, the quantities th a t change abruptly  in 
a phase transition are the first derivatives of a therm odynam ic po­
tential, namely, specific volume v, entropy s, internal energy u, 
enthalpy h, and free energy /. They change from the values on the 
left boundary curve to the values on the right boundary curve. But 
the second derivatives of the potential, such as cv and (dp/dT)p, 
change discontinuously only when we cross the boundary curve. 
Relations th a t give the values of these discontinuities are of great
11 —  0 4 2 7
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practical interest. We can easily obtain them, since they are partic­
ular cases of the general discontinuity equations for thermodynamic 
quantities on the boundary curves obtained in the previous chapter. 
Let us consider these relations.

7.5.2. We sta rt with the discontinuity of the isochoric heat ca­
pacity on a boundary curve. Equation (6.13) combined with (7.48) 
yields

c, tw„-ph_ c o o n e - p h  = _ T  [ jj£-_ ( A p ]  -§£- (7.74)
(superscripts two-ph and one-ph relate to the two-phase and the 
one-phase side of the boundary curve, while a shows that we are 
dealing w ith values on the saturation line).

For the left boundary curve of the liquid-vapor phase transition 
this equation assumes the form

t w o - p h ___o n e - p h
r  v

J"  ̂ dp y  o n e - p h dp 1 dv’
l f ~ J “ dF"’ (7.75)

while for the right boundary curve 

C w ° - P * - < two-ph =  _  T dv"
dT (7.76)

Since always3 

and

dp \ ' o n e - p h

W  lv > dp
dT

dv'
dT > 0 ,

it follows th a t always
g '  t w o - p h ___ g '  o n e - p h  v ,  Q

Sim ilarly, since

and

always

I dp \* t w o - p h  dp 
\ ~ d T ^ ) v <  ~~dT

dv"
dT < 0 ,

g  t w o - p h ___c "  o n e - p h  Q

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)

(7.82)

Thus, the isochoric heat capacity suddenly increases when passing 
from the one-phase region to the two-phase region. The behavior of

3 Except for the critical point (see Chap. 9). In some cases dv'/dT is negative 
(e.g. for water at T <  3.98 °C)
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the heat capacity cv when crossing the boundary curve is shown in 
Fig. 7.3 (here I  is the two-phase region and I I  the one-phase region).

(We note once more tha t this conclusion relates to the liquid- 
vapor phase transition). The same can be said about sublimation, 
since for this phase transition dvvap/dT <C 0 and dvsoU(i/dT  >  0.

As for melting, dv\lqldT  and dusoMfdT  on the boundary curve are 
positive for some substances and negative for others.

In the previous chapter we saw that the equations for the discon­
tinu ity  in the heat capacity cv when crossing the boundary curve 
can also be w ritten in the form (6.34)

Acv=  T
I

or in form (6.39)
d p  \  (  du \ 2
dv  ) t \  d T  )

If we combine these equations w ith (7.48) and (7.7), we obtain for 
the case under consideration, respectively,

c'

and

two-ph c ' one-ph _  _ T  ( dp j 'onc-ph

c ' two-ph__c ' one-ph __
v v

/ d p  \ '  one-ph / d u < \
1 I dv  ) t  I dT I

d p "12
| d T

(7.83)

(7.84),

and also
" two-ph — r" one-ph O.. i)

j  I  dv  \ " one-ph 
I  d p  )  T

d p  /  d p  \ " one-ph-| 2

(7.85)

11*
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and
c "  t w o - p h ___c "  o n e - p h
u V  V

/ dp \ "  o n e - p h  /  d v "  \ 2

{ dv ) T \ dT I (7.86)

Knowing the derivatives of therm odynam ic quantities on the 
boundary curve, we can use Eqs. (7.75), (7.76) and (7.83) through
(7 .86) to calculate w ith a high degree of accuracy the discontinuity  
in the heat capacity, Acv, instead of employing a complex calori­
m etric experiment.

7.5.3. Let us now consider the discontinuities in the adiabatic 
compressibility, isentropic exponent, and sound velocity on the 
boundary of the two-phase region. E quation (6.20) for the disconti­
n u ity  (dvldp)s combined w ith (7.49) yields

/  dv \ a  t w o - p h  ( dv  ̂o o n e - p h ___f  dT ( dT  ̂a o n e - p h  q  dsa
{ dp ) 3 I dp Is ~  [. dp \  dp Is J dp

(7.87)

For the left boundary curve the equation can be w ritten  as

/ dv \ '  t w o - p h  j dv o n e - p h  dT ( dT o n e - p h  -| ds’
\ dp Is ~  V dp Is ~  L dp \ dp J s J dp

(7.88)

-and for the right boundary curve as

/  dv \ *  t w o - p h  i dv ^ " o n e - p h  Ct  dT \ "  o n e - p h

I dp ] s “ I dp Is ~  ~~ I I dp Is 

Equation (6.35)

combined w ith Eq. (6.40)

ds•
dp *
(7.89)

enables us to write the relations for calculating the discontinuity in 
(du/dp)a in another form.

If we combine (7.9) w ith (5.100), we find tha t
c t w o - p h _  o o  _ (7.90)
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Bearing in mind that in accordance with (7.51)
( dT  ̂two-ph  dT
I dp Js dp ’

from (6.35) we obtain
/  dv \ 'two-ph / dv \ 'one-ph ^  Cp 'one-phr dT / dT \'°ne-ph “I2
\ dP /s ~ ~ T ~  L’dP_  l“ap/s J

(7.91)
and

/ dv \  "two-ph / gv \ "one-ph cp "one-ph C ( dT \ "one-ph dT "I2
I 'dp J s ~ \ H p ) s  ~~ T~ Lv"5p/s ~ ~ d p  \

(7.92)

Here (5775/?)° one’ph is the derivative taken on the isentrope at the 
point of intersection with the boundary curve on the one-phase side, 
and Cp0ne~ph is the isobaric heat capacity on the boundary curve on 
the one-phase side.

The quantity  dp/ds from Eq. (6.40) can be transformed thus:
dp   dp dT
ds dT ds (7.93)

Bearing in mind the definition of the heat capacity along a boundary 
curve (7.18), we obtain

dp   T dp
ds cs dT (7.94)

Combining this w ith (6.40), we find tha t

( dv \ ' two-ph i gv y  one-ph c'/ ( dT \ 2
I dp is \ dp ) s ~  j. 'one-ph I I F J  (7 .95 )

V
and

/ dv \ "two-ph_ / Qv \ "one-ph c"2 ( dT
I dp Js V dp ~  _  rc"one-ph \  ~df ) ’ (7 .96 )

-where c's and cs are the heat capacities along the saturation line fn 
the left and right boundary curves, respectively. r

prom these equations we see that always

(7.98)
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Since, as we know, (dv/dp)s is always negative, these relations imply 
tha t the absolute value of the derivative (du/dp)s always increases 
when crossing the boundary curve from the one-pliase region to the 
two-phase region:

I / ‘ dv  \ ojtwo-ph
II ~df J s

dv  \ o  one-ph 
d p  ) s

(7.99)

Equations (7.88), (7.89), (7.91), and (7.92) and especially (7.95) 
and (7.96) are useful for calculating the discontinuities in the adia­
batic compressibility, isentropic exponent, and sound velocity in 
the event of a transition across a boundary curve.

We recall tha t the quantity  given by (5.167) is known as the coef­
ficient of adiabatic compressibility

We see that we can easily calculate the discontinuity in (3,. if we know 
the relations for calculating the discontinuity in (dv/dp)s.

Next, we recall that the isentropic exponent is given by (5.181)

7  ( I ) . -
whence

v
fc/T* (7.100)

Substituting (dv/dp)s into (7.95) and (7.96), we obtain, respectively,
1 1 P c ? /  dT \  2

(7 .101).̂'two-ph k'one-pb 7VCp0ne-pl1 \  dp j

1 1 P c?  /f dT \  2
(7 .102)k"two-ph ^"one-ph 7V'c"one' ph *< dp )  ‘

This enables us to calculate the discontinuity in the isentropic ex­
ponent of a substance when crossing the boundary curves.

These relations, in particular, imply that for both the left and 
the right boundary curve the isentropic exponent on the one-phase 
side of the boundary curve, k° one‘Ph, is always greater than that on 
the two-phase side, /c t̂wo-ph

We recall tha t the sound velocity in a substance, a, is related 
to (dv!dp)s via the Laplace equation (5.191)

a = )
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whence

( £ ) , =  - ( t ) 2 -
Substitu ting into (7.95) and (7.96), we see

cs
(a'two-ph)2 (a 'one-ph)2

and
1

(a "two-phj» (a 'one •p h j2  7 ’[;"2C p0 n e "P ^  V d p

(7.103)

/  d T  \2
1 \  d p  ) (7.104)

(7.105)

These equations give the magnitude of the discontinuity in the 
sound velocity on the boundary of the two-phase region and show, 
for one, th a t in a transition from the one-phase region to the two- 
phase region the sound velocity always decreases, i.e. a^one-ph

a o  two-ph
7.5.4. Now let us study the discontinuity in the Joule-Thomson 

coefficient on the boundary of the two-phase region. In accordance 
w ith (5.168), the Joule-Thomson coefficient is defined thus:

H f ) „ -
The Joule-Thomson coefficient, like the thermodynamic quantities 

discussed above, changes abruptly  when crossing the boundary curve. 
The value of the discontinuity can be determined by (6.7).

If we set z =  T, x  — p, and y =  h, from (6.7) we obtain
( QT \ 0  two-ph (  d T  \o  one-ph 

d p  ) h  \  d p  ) h

I" /  d T  \ a two-ph / d T  \ a one-ph-j d h a

~~ LI dh ) p  {  dh  j p J d p  \

or, taking into account (5.168) and (5.106),

=  ( ___ 1______( a o n e - p h  ,
two-ph__one-ph 1 \  dha

a two-ph )  d p
(7.107)

p p

Since, as we already know, in the two-phase region
^two-ph_
' P =  OO.

it follows tha t

■ Ia two-ph n 0 one-ph   ̂ ^hg
** r  a one-ph d p

P

(7.108)

This relation gives the discontinuity in the Joule-Thomson coeffi­
cient on a boundary curve.
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If we combine (5.168) w ith (7.58), we can see that

jltwo-Ph= ^ . > (7.109)
Hence, the values of p, on the left and right boundary curves on the 

two-phase side are the same:
•̂two-ph "̂two-ph _ |̂ two-ph (7.110)

Taking this into account, we can write (7.408) for the left bound 
ary curve as

ntwo-ph— u'one-ph _ ---- \------------------- 17.111)r 'one-ph dp ' * A'
CP

and for the right boundary curve as

ntwo-ph_i,"one-ph __ *___________ (7 119)f* 1 "one-ph dp *
If we examine the h,p-diagram (Fig. 7.4), we see tha t dh'/dp i9 

always positive, which implies tha t always

one-ph <  t̂wo-ph. (7.113)

From the fo,p-diagram we also see th a t in the low pressure regions 
dhtttdp is positive, and as the pressure increases the sign of the de­
rivative  changes. Consequently, a t low pressures

jjPone-ph jjtwo-ph? (7.114)
while a t high pressures

jj"one-ph ■■■•> ptwo-pĥ (7.115)
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We see th a t these inequalities change sign at the point of the sat­
uration line where the enthalpy of dry saturated vapor h" a tta in s  
the m axim um  value.

7.5.5. Now let us turn  to the equations for the discontinuities in 
(dp/dv)T, (dT/dv)p and l/cp on the boundary of the two-phase region. 
Equations (6.26), (6.21), and (6.23), which describe the transition 
from the one-phase to the two-phase region, assume the following 
form:

) r ~
o n e - p h dp 1

dT J dT dva ’ (7.116)

V
r  / dT \ 0  o n e - p h

“  Lv'a7 )v
dT ~ 
dp _

1 dp 
1 dva ’ (7.117)

and

-  —
l r  / dT y  
T L U p  Js

o n e - p h  d f  ~ 

dp _
1 dp 
\ dsa ’ (7.118)

where in accordance with (6 .8)
/ dz '\ / dz \(D / dz \ ( 2 )

A 1y \ dx }y dx ) y
According to (6.4) wre can write

dp | 
dT '

( dp 
{ dT

\o o n e - p h  / 
) .  + (

’ dp \ 
. dv )

a  o n e - p h  

T

dva 
dT ’ (7.119)

dT i 
dp ~  \

■ dT >
. dp j

| cr o n e - p h  ^  ^ dT \
dv )

a  o n e - p h  

P

dva 
dp ’ (7.120)

and
dT / 
dp \

• dT ' 
. dP ,

o n e - p h  ^  ^ dT \ 
ds J

a  o n e - p h  

P

dSg 
dp * (7.121)

If we substitu te (7.119) into (7.116), (7.120) into (7.117), and 
(7.121) into (7.118), we obtain, respectively,

A n a n
' dp one-ph 
, dv / t ’

(7 .1 2 2 )

A / dT \ _  1 
\  dv } p I

’ QT \ o one-ph 
. dv ) p ’ (7 .1 2 3 )

a ( 1 ) — 1 (7 .1 2 4 )I Cp ) c one-ph *

This result is quite obvious if we consider (7.7), (7.8), and (7.90).
7.5.6. The equations derived in the previous chapter enable us to 

obtain a few more useful relations determ ining the discontinuities 
in thermodynamic quantities on the boundaries of the two-phase 
region. Relations for the discontinuity in (dv/dT)s in the event of 
a transition  across the boundary curve can be obtained in the fol­
lowing way.
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First, Eq. (6-15) yields
a two-ph_ / \ ct one-ph r dp ( d p  \ a one-ph a dva
s W ? 1 ~ L d 7 r ~ ( ' 3 7 r ) s  J ' d p ' - ( / > 1 2 5 )(Jr)

In accordance with (6.4) we can write
dp __ /_3p \ a one-ph / dp \a
dT { dT j s V 3s Jr

one-ph dsa
' T dT

Combining this and the Maxwell equation (4.4a), we obtain
dT \o  one-ph Cs dva 

'p

(7.126)

/ dv \ °  two-ph__/ dv \ a one-ph __ / dT \o  one-ph Cs dva n
( ~dT~Js \ d T ) s ’foTIp T dp ‘

Second, Eq. (6.18) implies tha t the same quantities can be w ritten 
thus:
/ dv \ 0  two-ph_/ dv \
l ^ r J s  ~ \ d  T )

do \ o one-ph 
s

dT l dT \o  or.e-pli-l cs , 7 , 0 0 .
d f - l u F l *  J t -  ( ' - 1 2 8 )

If we substitute dT/dp with the help of Eq. (7.120), we arrive at 
<7.127).

Third, Eq. (6.37) yields
r /  dv \ a two-ph / dv \ a one-ph ] / dT \
L l ^ r J s —  l i i r J s  J  l i r  J

_  r dT i dT \ o one-ph "l r dp / dp \ a one-ph n
=  L ' d F ~ l V J r  J '

dT \oonc-ph 
P

dp \a  one-ph"
(7.129)

If we replace dT/dp with the help of Eq. (7.120) and dp/dT with the 
help of (7.126), we obtain (7.127).

Finally, Eq. (6.43) also yields (7.127).
We can obtain relations for the discontinuity in (dT!du)s from 

Eq. (6.25), which for a transition from the two-phase to One-phase 
region is transformed to
/ dT \ °  two-ph / dT \cr
V dv Js I dv Is

dT \Q one-ph 1
.a one-ph ^ r ) ^ -  <7'130>

V 1

Relations for the discontinuity in (dp/dT)s follow (a) from Eq. 
(6.23), which we combine with (7.51) and write for the case under 
consideration

d p  /  d p \ a o n e - p h_ / d T  ^aone-ph c$

H T ~ \ ~ d T } s = ~ [ ~ d 7 ) p  Y ~  ’ 

and (b) from (6.42)
d p  (  dp_ a  one-ph_ f  d T  j  d T  ^aone-phq Cg d p

~ d f ~ ~ \ d T ) s ~  ~  L W  ~ \ ~ d p  ) v J ~ d 7 7 *

(7.131)

(7.132)

Transforming (7.132) with the help of (7.120), we can easily show 
that Eqs. (7.131) and (7.132) are identical.
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We can obtain relations for the discontinuity in ( dTldp)s from 
Eq. (6.23) if we bear in mind that in accordance with (7.51)

d T  \two-ph d TI d T  \ two-ph __ d T  

V d p  d p

from (6.23) we obtain
d T  l  d T  \  ct one-phd T  (  d T  y

d p  [  d p  }<

dsQ
. a  one-ph d p  
CP

Taking into account that
dSn cs d T
d p  T  d p  ’

l

from (7.133) we can obtain an interesting relation 
d T  \  v  one-ph / t c, d T( I L Y

I d p  ) i
[ 1 _____ £*-----) —f a  one-ph )  d p  'Op *■

(7.133)

(7.134)

(7.135)

From (6.30) we obtain a relation for the discontinuity in (dpldv)t 
a t  the transition across the boundary curve:

/ d p  \ o  two-ph ( d p  \

\  fli? / j  V dv  j

a d T  \ cr two-ph
UT h

Bearing in mind that

d p  \ one-ph
5

dv

obtain

/ d T  \CT one-ph-| d s a 

\  d v  ) s  J  d v
(7.136)

J — ) ( i l l
\  ds  ) v \  dv  / T '

(7.137)

ds<j d T  
d T  d v a ’ (7.138)

(5.101a) and (7.18), from (7.136) we

/ dp y  tw°‘Ph ( dp y
I dv  ) s  V d v  ) s

=  Cc i d p  \ a one-ph
0a  one-ph m :

one-ph

1 d p
ra  two-ph d T

d T

dVa (7.139)

Combining this w ith (5.181) and (5.191), we obtain relations, re­
spectively, for the discontinuity in the adiabatic exponent

k
Csuo

a  two-ph y  one-ph 

(  d p  \ c one-ph- d p  one-ph 1 d p
a  one-ph ( d T  ) v r a  two-ph d T

d T

dua
(7.140)
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and for the discontinuity in the sound velocity

- — c3u%

( q C two-ph^2 ^a o  one-ph^ 2

1
.a onc-ph 
cv

d p  \ a  one-ph
W  )v

1 d p  
a  two-ph d TS

d T

d v a
(7.141)

I t  may seem that these relations are more convenient than Eqs. 
(7.101), (7.102), and (7.104), (7.105), since they enable us to calcu­
late directly the discontinuities in the adiabatic exponent ka and 
in the square of the sound velocity (a?)2 and not 1 lka and l /( c a)2. 
However, comparing Eqs. (7.101), (7.102) and (7.104), (7.105) with 
(7.140) and (7.141), we see th a t the former are considerably simpler.

The relations obtained above determine the discontinuities in 
the derivatives taken at the intersection of an isentrope w ith the 
boundary curve in the v, T-, p ,T-  and p , e-diagrams.

Together with Eq. (7.75), (7.76) and (7.83) through (7.86) for de­
term ining the discontinuity in the heat capacity cv in the event of 
a transition across the boundary curve, equations for the disconti­
nuity  in the quantity  inverse to cv are interesting for certain cases.

From (6.36) we obtain
r  (  d T  two-ph / d f  \ o  one-ph ~|2

1 1  J _  1. V dv  is__________V d v  is______
.aone-ph _o two-ph T  ( d p  \ a  two-ph r Qp  \ a  one-ph
V V I  ~ d v ) s  ~

and from (6.41) we have
1___________ 1

c  one-pli r o two-ph
cv c v

_  T  r  ( d p  \ a  two-ph / d p  \oone-ph-| / d v a \2
— l u r j ,  J l ^ F j  •

(7.142)

(7.143)

W ith the help of Eq. (7.130) we can easily see th a t these relations 
are identical.

7.6 Heat Capacities on Boundary Curves

7.6.1. We have already noted th a t the heat capacity along a 
boundary curve, cs, is determined via (7.18)

where d s J d T  is the total derivative along the boundary curve.
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Eqs. (6.4) and (6.5) wc see that d sJ d T  can be w ritten  in the

form 0f the following equivalent expressions:

and

1e>l
Co ( ds \ a one-ph . 

1  + 1
' ds \ a one-ph dp

dT 1{ 6T k dp I t dT ’
dsa I ds \cr one-ph , 

) .  + 1
f ds 'i a one-ph dv<j

dT [ w I dv ,It I F ’

dsa 1' ds '.a two-ph f ds 1i cr two-ph dva
dT \ I  ^ I dv >' T dT ‘

(7.144)

(7.145)

(7.146)

Bearing in mind (5.78a), (5.79a), (4.3), (4.4), and (7.48), we can 
transform these relations to

, .a one-ph „ . ,ds0 _  cp f dv \aone-ph dp
T { I F  j P dT ’dT

ds<j .a one-ph

dT
dp  ̂a one-ph dva

I F

a n d
dSn a two-ph

dT
dp dv0

"I JTdT dT

(7.147)

(7.148)

(7.149)

Taking these relations into account, from (7.18) we obtain for the 
left boundary curve

/one-ph
Cs —  cp

> /one-ph Cs — Cxi

T ( dv \'one-ph dp
~ J  I d T / p  I F ’

T I dp_ \  'one-ph dv'
1 [ dT )„ dT ’

„/ /two-ph | rp dp dv'
Cs — Cv -t- I  dT ‘

Sim ilarly , for the right boundary curve
* "one-ph rp I dv \ "one-ph dp

c, =  cv - T ( w ) p w ,

„ _  "one-ph i rp I dp "one-ph dv" 
Cs — Cv  1 “  1 ) v " d f  ■>

r"  " two-ph i rp dp dv"
s— v f  1 dT dT *

(7.150)

(7.151)

(7.152)

(7.153)

(7.154)

(7.155)

These equations relate the heat capacities c3, cp, and cp on bound­
ary  curves.

7.6.2. From Eq. (3.28a) w ritten as
Tds — dh — vdp
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and taking into account (7.18), we can see that
__ d h a ^ d p

C s ~ ~ d T ~ V a ~ d f '
(7.156)

This relation is most convenient for practical calculations of the  
heat capacity cs.

7.6.3. We note that if we equate the right-hand sides of Eqs. 
(7.151) and (7.152) and, respectively, the right-hand sides of (7.154) 
and (7.155), we obtain Eqs. (7.75) and (7.76) for the discontinuity 
in the heat capacity cv on boundary curves.

On the other hand, equating the right-hand sides of Eqs. (7.150) 
and (7.151) and, respectively, the right-hand sides of (7.153) and 
(7.154), wc obtain the equations for the difference in the heat capac­
ities cp and cv on boundary curves on the one-phase side:

/  one-ph_ ' one-ph__p  f  (  0 v _ V  one^ )h dP_ , (  d p _ \  ' one-ph dv^_
P * ~  W d T  >p d T ^ K d T l v  dT

and
(7.157)

one-ph__ " one-ph
' p  Lv

d p  \ " one-ph dv" ~ . (7.158)__rp r  / dv_ \  " one-ph dp_ I dp_ \ " <

~  I. I OT f p  d T  ' \  0 T  ) v  d T  J

We can easily show that these relations can transform to the type 
(5.109), i.e.

/  one-ph ' one-ph__p ( dp
P v I dT

\ '  one-ph / dv \ '  one-ph 
1 v \ dT / p (7.159)

and
" one-ph "one-ph__p (  dp '
P v I 3T j

"one-ph / dv one-ph 
v \ dT ) p (7.160)

Next, from (7.150) and (7.152) and, respectively, from 
and (7.155), we obtain

(7.153)

' one-ph ' two-ph__j ,  dp T
P v ~  dT [.

I dv \ '  one-ph f dv' q
\ dT )p 1 dT J (7.161)

and
"one-ph "two-ph__p dp ["
p c’- d r [

/ dv \" one-ph dv" ‘
I dT Ip +  dT J • (7.162)

It is interesting to note that Eq. (7.161) was once used effectively 
to prove the inaccuracy of experimental data on the heat capacity 
cv for water given in one article. This was done as follows. Since both 
(dv/dT)pne~vh and dv’/dT are positive (for water this is true at 
T >> 3.98° C), it follows from (7.161) that

ĉ ono-ph__c'_two-ph> 0. (7.163)
Since comparison of the experim ental data on the heat capacity 
Cptw°‘ph, given in the article, with the precise data on the heat ca-
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pacity cpone"ph of water revealed that the values of ĉ tw0' ph are 
greater than those of cpoue'ph , the inadequacy of the experimental 
data on cv was proved.

7.7 Thermodynamic Quantities in a Two-Phase Region
7.7.1. As we noted in Sec. 7.1, those thermodynamic quantities- 

that are the first derivatives of a thermodynamic potential (v , s, u, h r 
and /) are additive in a two-phase region:

y t w o - p h  = v '  ( i — x) +  v " x , ( 7 . 1 2 )

5 t w o - p h  _  s ' ( 1 ---- j r )  _|- s"x. ( 7 . 1 3 )

Mt w o - p h  =  U ’  ( 1  _  X )  - f  u"x, ( 7 . 1 4 )

h t o ° - p *  =  h ' ( I  — x) +  h”x, ( 7 . 1 5 )

^ t w o - p h  =  f  ( l _ j : ) - f  f x . ( 7 . 1 6 )

As for quantities that are the second derivatives of a thermodynam­
ic potential (cD, (dv/dp)s, k  and a and others), their values in a two- 
phase region expressed in terms of thermodynamic quantities on 
the left and right boundary curves and the degree of dryness, x, are 
determined by the relations which we discuss below.

7.7.2. We sta rt w ith (dv/dp)s. D ifferentiating (7.12) w ith respect 
to pressure with s kept constant, we obtain

/ dv  Uwo-ph d v '  ,. . . dv" . , „ / d x  \  , n

{— ),  = — i l - x ) + — x + i v - v ) ( w ) . -  (7' 164>
In connection w ith this derivative we note the following. We 

calculate the partial derivative w ith respect to p  with s kept constant, 
but since v' and v" as well as other quantities on the transition curve 
are functions of only one variable, the derivatives of v' and v" with 
respect to p can only be total, i.e. dv'ldp and dv'ldp.

Next, since in accordance with (7.17)
f

S — 5

differentiating this w ith respect to pressure w ith s kept constant and 
taking into account the note on differentiating v' and v", we obtain

(7.165)

Then, in accordance w ith (6.4) and (6.5), we can write

dv' ___/ dv \ '  t w p - p h  1 I dv \ ‘  t w o - p h  ds'
~ ~ \ ~ d p ) s  + \ ‘a 7 / p d p

(7.166)
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and
dv" __  I dv \ " two-ph / dv two-ph ds"
dp  I dp I s ^  I ds I s dp (7.167)

Bearing 
(7.167) to

in mind Eqs. (4.2) and (7.51), we transform (7.166) and

dv'    / dv \ ’ two-ph , dT ds'
dp I dp Is ^  dp dp

(7.168)

and
dv"   / dv \"  two-ph dT ds"
dp  I dp J s dp dp *

(7.169)

Substituting into Eq. (7.164) these expressions and also (7.165) 
for (dx/dp)s and taking into account tha t according to (7.22)

v" — v' _ dT
s"— s' dp ’

(7.170)

we obtain
dv \ two-ph

W / c
j  dv \ '  two-ph /  dv \
( l 7 ) .  +

" two-ph
X. (7.171)

W e see tha t (dv/dp)s in a two-phase region is additive, which is not 
obvious a priori.

Sim ilarly, differentiating (7.12) w ith respect to T w ith s kept con­
s ta n t, we can show that

w V vh=  ( w ) ' r ' th <i - * > + ( & ) ' ,  tw°'Ph *• <7-” 2>

The relation determining (dv/dp)s in a two-phase region can be 
obtained in another form. Equation (5.165)

/  dp \ __ / dp \ ___T I dp \ 2
\  dv ) s \ dv I T cD \ dT ) v

combined w ith (7.7) and (7.48) is w ritten for a two-phase region thus:

whence

dp ’ 
dv

|  two-ph
r  1 two-ph \

cv

( dP \ 2 
\ d T  I ’

( 7 . 1 7 3 )

dv '
ctwo-ph

/ dT \ 2
( 7 . 1 7 4 )dp /

| two-ph

T 1\ dp 1 ’

where c£wo’ph is the isochoric heat capacity in the two-phase region. 
We note th a t these interesting relations are almost unknown; they 
are extrem ely useful for calculating thermodynamic properties in 
the two-phase region.
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We see th a t Eqs. (7.171) and (7.174), despite their apparent distinc­
tion, are identical. We can easily show this if we transform (7.171) 
in the following way: since it is obvious that

and, hence.

(7.176)

it follows tha t allowing for the Maxwell equation (4.3a) and Eqs. 
(5.101a), (7.48) and (7.51), we can transform relation (7.175) for 
the two-phase region to (7.174).

From (7.171), in particular, it follows that
I dv \  " t w o - p h  / dv \ ’ t w o - p h

r s ( &v \ i  n  ,77.
L dv { dp /  J r  v" — v' ' ‘ ’

and from (7.174) th a t
t w o - p h ___ ' t w o - p h

V Lv
T (v" — v') (7.178)

These (identical) relations determine the variation in (dv/dp)s along 
an isotherm in a two-phase region; we see th a t the dependence is 
linear (since the quantities on the right-hand sides of these equations 
remain constant on an isotherm).

7.7.3. We turn to the heat capacity cx of a two-phase m ixture. 
The heat capacity of a two-phase m ixture along the line of constant 
dryness, x =  const, is determined in accordance with the general 
relation (5.99):

e* - r  ( £ ) , ■  <7-179)
The equation for calculating cx from the known values of the ther­

modynamic quantities on the left and right boundary curves and the 
degree of dryness is obtained by differentiating relation (7.13) with 
respect to tem perature with x  kept constant:

ds'
dT ( i - x ) ds

~dT (7.180)

Combining this w ith (7.18), we find that

We see tha t

1 2 - 0 4 2 7

cx cs (1 x) csx,

(  dCy \   cs ~~ cs
\ dv ) t ~  v" — v' '

(7.181)

(7.182)
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7.7.4. Next we study in a two-phase region. D ifferentiating 
(7.14) with respect to T with v kept constant and taking into account 
the remark made in Sec. 7.7.2, we obtain

( ^ ) , » o . p"= ^  (1 . (7.183)

From (7.17)

it follows that

( £ ) . =

X -

1

V —  V

' v" — v'

V —  V

Taking into account that
du' l du \ '  t w o - p h

dv' .. . , dv"
dT dT

dT
( du \ ' t w o - p h  / du \ ' t w o - p h  dv'
l"dF /r  I dv ) t dT

du" _  t w o - p h  / du t w o - p h  dv"
dT ~  I dT lv  ‘ I dv ) t dT

f du \
\ W ■ ) v ~ Cv,

and, hence,
/ du \ t w o - p h  _  dp 
I dv ) t  dT P'

du 'jt w o - p h

from (7.183) we find that
c t w o - p h  c '  t w o - p h   ̂j  x)-\- c" t w o - p h  X '

We see, for one, that
- , - t w o - p h  \ "  t w o - p h   ' t w o - p h\ C,,,

I T

(7.184)

(7.185)

(7.186) 

(5.107)

(5.2)

(7.187)

(7.188)

(7.189)dv J t  v " ~ v '

Finally, if in (7.188) we substitute Cutw0' ph and c„two' ph via 
(7.152) and (7.155), respectively:

t w o - p h   '  t  “ P--  5̂ 1 i m
dp dv'

and
dT dT

"  t w o - p h   "  rr dp dvt v dT dT ,

(7.190)

(7.191)

we obtain an equation relating cvtwo’ph and cx:
„two-ph__  f  dp f  dv /A   a , dv
v * dT L dT ' ’ dT * ] •

(7.192)
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This equation implies th a t because an isochore does not coincide 
w ith a line x =  const, i.e. due to the variation of the degree of dry­
ness along an isochore (redistribution of substance between phases), 
the heat capacities c4wo"ph and cx differ from each other by the 
term  on the right-hand side of Eq. (7.192).

7.7.5. Let us study the isentropic exponent in a two-phase region. 
In accordance w ith the general definition of the isentropic exponent 
(5.181)

and taking into account (7.12) and (7.171), we obtain

y t̂wo-ph v '  (1 —x) +  v " x  
r  / d v  \ ' two-ph / d v  \ " two-ph
L V dp )s ( dp Js X

(7.193)

Using Eqs. (7.174) and (7.188). we can write the relation determ in­
ing the isentropic exponent inside the two-phase region in the fol­
lowing form:

^two-ph 1 v' (1—x)-\-v"x I dp \2
T  c;tw°-ph (i _ a;)+ c ; two-eh2 I I F )  • (7.194)

Other forms of this equation are also known. But the two equations 
(7.193) and (7.194) are the sim plest in form, clear in their physical 
meaning, and useful for practical calculations.

7.7.6. We turn  to the sound velocity in a two-phase region. The 
Laplace equation (5.191) for a two-phase region is

( j t w o - p h  _ _  y / ~  —  ( y t w o - p h ) 2  ^ d p  j  t w o - p h (7.195)

Taking (7.12) and (7.171) into account, we can transform this 
equation to

^two-ph . v ’ (1 —x) +  v"x
,  r t dv V  two-ph I dv \" two-ph -iV ~L(w)s (1- i)+(i^).

while taking (7.174) into account, we can transform it to

, (7.196)

Gtwo-ph . y1 dp v' (1 —x)-\- v"x
dT y  f  two-ph ( i —x) -j-c" two-ph X] " (7.197)

These equations determine the sound velocity in the two-phase 
region from the known values of the thermodynamic quantities on 
the left and right boundary curves.4

4 Here we are speaking of the so-called thermodynamic sound velocity, i.e. 
the sound velocity at zero frequency. The question of the frequency dependence 
of the sound velocity in a two-phase region is beyond the scope of this book.
12*
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7.7.7. Finally, we discuss the behavior of the Joule-Tliomson 
coefficient in a two-phase region. As noted in Sec. 7.4, in a two- 
phase region the Joule-Thomson coefficient has the same value along 
an isotherm for any value of x\ namely, in accordance w ith (7.109),

|^two-ph =  dTIdp .

We note in passing th a t the usual relation (5.139) for the Joule- 
Thomson coefficient

makes no sense for a two-phase region, since in this case on the right- 
hand side of this relation, as follows from (7.8) and (7.90), there 
appears an indeterminate form of the co/oo type tha t cannot be 
evaluated.

7.8. Equations Relating Thermodynamic Quantities 
on the Left and Right Boundary Curves

7.8.1. The following equations relate thermodynamic quantities 
on the left and right boundary curves. We sta rt with quantities tha t 
are first derivatives of a thermodynamic potential (v, s, u, h, and /). 

The Clausius-Clapeyron equation (7.26) implies that

v tt — v' r dT
Y~dp (7.198)

We recall tha t in accordance w ith (7.25)
s" — s' =  rlT  

and in accordance with (7.24)
h" — h' =  r.

Since in accordance w ith (1.14a)
h =  u -j- pv,

i t  follows th a t
n t / n t \u — u =  r — p (v — v ). 

Combining this w ith (7.198), we obtain
P  dT

(7.199)

(7.200)

(7.201)

(7.202)

F inally , since in accordance w ith (3.41)

/  =  u — Ts,
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combining this w ith (7.201) and (7.25) we can write
-  p (v" -  v'). (7.203)

We recall (see Sec. 7.1) tha t in a two-phase region v, s, u, h , and /  
are additive, i.e. they change linearly w ith the degree of dryness x. 
Here, as we see from the above relations, the values of v, s, u and h 
are greater on the righ t boundary curve than on the left. As for /, 
from (7.203) we see that

/ " < / ' •  (7.204)

This is not surprising, since from (3.41) if follows tha t

( ° L \ _ / j ? M  .
\ dv I t  \ dv I t  \ dv ) t

And since (5.2)

i, dv I t  \ dT 1 v ^
and (4.3)

\ dv ) t \ dT ) v ’

are valid , it  follows that

(7.205)

(7.206)

i.e. the free energy on an isotherm always decreases w ith increasing 
v.

This dependence has a clear physical meaning, too. We know th a t 
a system in an isothermal process performs work a t the expense of its 
free energy. The phase transition requires work to be done and, hence, 
the free energy decreases as the degree of order in the system de­
creases.

7.8.2. From Eqs. (7.198) through (7.201) and (7.203) we can easily 
obtain equations relating the total derivatives of v, s, u, h and / 
w ith respect to tem perature along boundary curves.

D ifferentiating (7.198), we obtain
dv" dv ’ (v" — v' ) { 1

dr 1 dT d2p \ (7.207)dT dT ’ I  T dT T dp dT2 )

From (7.199) it follows tha t
ds” ds' 1 / dr r ) (7.208)dT dT ‘— T \ dT T 1 ’

from (7.200) that
dh" dh' dr

(7.209)dT dT '~  dT
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from (7.201) that
du" da' dr r 
~dT d f = ~df T P { v " - V )  (y --f- dT d2p 

dp dT- r dT ) ’ (7-210)

and from (7.203) that
dj" df' ,r\ I 1 dr 1 dT d2p \ r

~dT d ¥ ~ "  ~ ’ ’ \ T ~ d ¥  ¥ ~ ~ d p  dT2 j ~ T (7.211)

7.8.3. We turn to the equation relating the values of the heat 
capacity cs on boundary curves. As noted above, for the left and 
right boundary curves we have, respectively,

/ rp dSc , - r  dT (7.212)
and

tt rp dS
C° ~ T dT ’ (7.213)

Hence, it follows that
T ( ds" ds'  ̂

Cs Cs~  1 \  dT dT ) • (7.214)

Combining this with (7.208), we obtain
dr r 

C$~ Cs~~dT ¥  ‘ (7.215)

This equation, sometimes called the Clausius equation, relates the 
values of cs on the left and right boundary curves.

Since the heat of vaporization decreases as the tem perature in­
creases, and, hence, drldT <C 0, it follows that always

c's — c\ <  0. (7.216)

We recall th a t c"s for most substances is always negative.
Taking into account (7.215) and (7.198), we transform (7.182)

to

<7-217)
Hence, it follows that cx on an isotherm decreases with increasing v.

7.8.4. Now let us discuss the equation relating the values of the 
heat capacity cp on boundary curves. As noted above, when the 
heat capacity cp crosses a boundary curve, it changes discontinuously 
from c®tw0'Ph at the point of intersection of an isobar with the bound­
ary curve on the one-phase side to infinity in the two-phase region. 
Let us find the relation connecting c"one-Ph and Cpone-Ph.

In accordance w ith (7.205),
dh"
dT

dh' dr
d T 'dT
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We can write the expression for the total derivative of enthalpy 
on the saturation line w ith respect to temperature in accordance with
(6.4) thus:

< 7 - 2 i 8 >

Combining this w ith (5.106) and (5.11), we obtain

~^fr = c °p one-Ph-[_ ^ i'a T
dv  \ a one-ph- 

~dT )  P
(7.219)

Therefore, we can write

—  = c ;o n e -P h + ^ " _ r  ( dv  \
w )

'one-ph“

P
d p
d T

(7.220)

and

II
-si ^

, i r  . / dv \ ’ one-ph nr ( ar) j) ] d p
I t ■

(7.221)

Substitu ting dti'IdT and dh’/dT  into (7.209), we obtain

/-"onc-p
CP

h c 'o n c -p h _  d r  ( v " v >\ d P
P d T  ^  '  d T +  ? •[(

dv  \ "one-ph 
d T  )  p

 ̂ Qv j 'onc-ph- 1 d p  
1 d T

(7.222)

whence
r "one-ph r 'one-ph d r  r  \ T  f  (

P P ~ ~  d T  T  ^  1 L \  0 T

j  "one-ph ^ dv  \'one-ph
I T  ) p

1 d p
J  d T  ■

(7.223)

This equation relating Cponc'Ph and Cp0ne'Ph is sometimes called 
the Planck equation. It enables us to match the various values of 
co one-ph obtained as a result of independent measurements, and also 
to calculate the values of cap one’Ph on the other boundary curve from 
the known (for example, measured in an experiment) value of c° one-Ph 
on another boundary curve. For these purposes the Planck equation 
has been successfully used for water and water vapor.

We note th a t the Planck equation can also be obtained by sub­
stitu ting  c's and c" from Eqs. (7.150) and (7.153) into (7.215).

We also note tha t Eq. (7.129) w ritten as

c ? o„c-ph ( 1 ) '  ° nC*Ph j &  (7.224)

is convenient for practical calculations of heat capacities on boun­
dary curves.

The differential equations discussed in this chapter were derived 
for simple thermodynamic systems (i.e. systems performing only 
work of expansion) but can be generalized to various complex sys-
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terns. In the next chapter we will discuss an equation sim ilar to 
the Planck equation th a t relates the heat capacities of a supercon­
ductor in the superconducting and normal states at the phase tran ­
sition point in the superconductor.

7.8.5. We derive an equation relating the values of the heat ca­
pacity  cv on the boundary curve. As already noted, the isochoric 
heat capacity changes from the value of c£ one' ph on the one-phase 
side of the boundary curve to the value of c£ t" ° 'ph 0n the two- 
phase side. We can obtain the equation relating the values of tvv0' ph 
on the left and right boundary curves, c„tw0"pl1 and c1)two’ph, in the 
following way.

Differentiating (7.201) w ith respect to tem perature, we obtain

+  < 7 - 2 2 5 >

In accordance w ith (6.4) the expression for to ta l derivatives of 
internal energy on boundary curves w ith respect to tem perature can 
be w ritten, taking into account (7.48) thus:

du / . " t w o - o h  1 ( 
dT Cv ' (

r p  d p

dT
\ dv" 

P )  dT
(7.226)

and
du —  v t w o - p h  i (
dT v ^  V

r p  dp
dT

\  dv'  
P )  dT * (7.227)

Substituting these values into (7 •221), we obtain

c " t w o - p h ___^ ' t w o - p h  =
V V = T ( v " v' )  d°'p u > dT* • (7.228)

This relation can be obtained in another way. The well-known 
therm odynam ic equation (5.128)

combined w ith (7.48) for the two-phase region is w ritten  thus:
w ° - p h  ,2

— ) r  =  TJm -  <? -229>
E quating  the right-hand sides of th is equation and Eq. (7.189), 
we obtain (7.228).

From (7.228) we can see th a t for all substances always
Cnw°-Ph >  c'two-ph  ̂ (7.230)

Lei us now find an equation relating the values of cv on the righ t 
and left boundary curves on the one-phase side, Ci)one*ph and c„one'ph‘ 
We can easily obtain the relation from (7.228), (7.84), and (7.86).



7. Phase Transitions 18a>

From (7.84) and (7.86) it follows tha t

and
c'one-ph _ c 'two-phV d

one-ph  ̂ dv' ^2
dT )T i t ) [

, / Op \  "one-ph / dv" \ 2 
V dv ) t V dT )

c"one-ph _  r"two-ph _l r v '

Hence we see tha t

c"one-ph — c 'one-ph _  T f  _£*!£. _|_ ( 1'L. \
V S  1 V ) dT2 ' { dv )

( dp \ 'one-ph f dv’ ^2~|
_  I SIT Jr I dT ) J*

(7.231)

(7.232)

'one-ph / dv" \2

(7.233)

The behavior of cv with v on an isotherm on the boundaries and 
in a two-phase region is shown in Fig. 7.5, where I  is the liquid re­
gion, I I  the two-phase region, 
and I I I  the vapor region.

Obviously, all equations re la t­
ing the values of second deriva­
tives of a therm odynam ic poten­
tial on the left and right bound­
ary curves on the  one-phase 
side are sim ilar in structure, 
i.e. in general they can be 
w ritten thus:

y"one-ph y'one-ph _  ^ y "

Ay',
(7.234)

here y is a thermodynamic func­
tion th a t is the second derivative of a potential, and Ay the jump 
of this function in the transition across the boundary curve from 
the one-phase region to the two-phase region.

7.8.6. Let us discuss an equation relating the values of (do/dp)s 
on boundary curves. Differentiating Eq. (7.198)

(y"t\vo-ph__ '̂two-ph^

V —  V  =
T  dT 
T dp

with respect to pressure, we obtain
dv"
dp

dv'
dp

1 dr dT 
T dp dp

r d-T r ( dT y
T dp2 T2 { dp ) (7.235)

Substitu ting into th is relation dv'/dp from (7.168) and du'ldp 
from (7.169) and bearing in mind tha t the difference

ds" ds'
dp dp
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combined with (7.199)
//s — li

can be written as
ds ” ds ' 1 d r  r  d T
d p d p T d p  T 2 d p  ’

from (7.235) we obtain
/ d v  \ "two-ph / d v  \ 'two-ph_ r d 2T

I d p J s  Vd p j . ,  ~  Y i p 2 '

(7.236)

(7.237)

This equation relates (dv/dp)s on the left and right boundary curves 
on the two-phase side. Since on the saturation line, as evidenced 
by the p,T-diagram,

d 2T

d p 2
< 0 (7.238)

and since, as we know, (dv/dp)s is always negative, it follows that 
always

dv  \ "two-ph 
d p  )  s

I / _du \ 'two-ph
>  I \ Tp) s (7.239)

The equation relating (do/dp)"s t w o - p h  an(f (dv/dp)'s t w o - p h  

w ritten in another form. From (7.174) we see that
I dv  \ ' t w o - p h  ^  c ^ t w o - p h  , d T  \ 2
I 'dp )  s ~  T \  d p  I

can be 

(7.240)

and
f  dv  \  "two-ph c"two-Ph d T  2

U p  )  s ~  T I d p  ) ■
(7.241)

Hence, it follows that

I d v  \ "two-ph / Qv \ 'two-ph
U p  )  s [  d p  ) s

"two-ph 'two-ph
S  c v

T ( f ) : (7.242)

Combining this with (7.228), we obtain
d v  \ "two-ph / d v  \ 'two-ph
d p  ) s \  d p  )  s

2 d 2p  
d T 2 *

(7.243)

Equations (7.237) and (7.242) are, of course, equivalent. We can 
easily show this with the help of (7.11):

d 2p
I f

1 _  ( d P  \
2 \ d T  I

d p  \ 3  d 2 T 

d p 2

We can now obtain an equation relating the values of (dv/dp)s on 
the left and right boundary curves on tbc one-phase side.
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From (7.95) and (7.9(3) il follows that

dv  \  ' t w o - p h  i  dv  \  ' o n e - p h/  dv  \  ' t w o - p h   j  dv \

1 d p  I  s \  d p  J ■ m
and

/ dv  ̂"two-ph_ / dy \
I d p )  s I dp j

dv \  " o n e - p h  

d p  / s

7> ' o n e - p h  
1

T  . " o n e - p h  
1 P

(7.244)

[ w f -  ^

Substituting (dv/dp)'s t'v°-ph and (dvldp)"s t'v°-Ph into (7.237), we 
obtain

/  dv  \  " o n e - p h  (  dv  \

I d p  J s I d p  I

= t [(

dv  \  ' o n e - p h  

s
d T  \ 2

" o n e - p h ' o n e - p h
7 7

Taking into account (7.237), we can write the relation thus:

dv  \  ' o n e - p h(  —  \  "o n e - p h  (  dv  \
\  d p  1 s \  d p  )  <

- T  ( f  ) ' [ 7 S i r - 7 K r - ^ - » 1 ^ ] ’ <7-247>

These equations relate the values of (dv/dp)s on the left and right 
boundary curves on the one-phase side.

The behavior of (dv/dp)s with v on an isotherm on the boundaries 
and in a two-phase region is shown in Fig. 7.6 (the notations are 
the same as in Fig. 7.5).



188 The Differential Equations of Thermodynamics

7.8.7. We turn to an equation relating the values of isentropic 
exponent on the boundary curves. If we take into account (7.100)

I dv  \    v
\  d p  )  s ~~  k p  ’

from (7.237) we obtain
v" v' r p  d 2T

k"two-ph ^'two-ph f ~  d p 2 (7.248)

Combining this with (7.242), we can write
v" v' _  , ,,, / dT \ 2 d2p

fc"two-ph ^,'two-ph ~  P \v v ) [ d p  } dT2 ' (7.249)

These equations relate the values of the isentropic exponent on 
the left and right boundary curves on the two-phase side.

Next, from (7.245) we see that

k"one-ph ^'one-ph

P  [ /  c32_________c!'2 \  ( d T _ \ 2
T  L I  c'one-ph c"one-ph j \ d p  )

P P

Similarly, from (7.246) we obtain

^"one-ph ^'one-ph

p_ ( £ _ \ 2 r  c»2
T \  d p  } L c'one-ph

P

"2

~"one-ph +  ( V " 
CP

V ) ^ ] .  (7.251)

Such are the equations relating the values on the left and right 
boundary curves on the one-phase side.

7.8.8. We derive an equation relating the values of the sound ve­
locity on boundary curves. Since in accordance with (7.103)

from (7.237) we find that

I -  v" -  -  V\  fl"two-ph / \  'two-ph J
r  d 2T  

T ~ d p r ‘
(7.252)

Sim ilarly, from (7.243) it follows that

/ ___V1 ___) 2_ ( ___ V1___V fl"two-ph / \  fl'two-ph )(£ )
d 2P 
d T 2 •

(7.253)

These equations relate the values of the sound velocity on the left 
and right boundary curves on the two-phase side.
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We can obtain an equation relating a two-pii and a" tw°-Ph explic­
itly , i.e. not as the difference in values of the inverse square of 
a a  two-ph difference of squares of sound velocities on bound­
ary curves. To this end we replace in the relation obvious from 
<7.103)

a

the values of the derivative using (7.173) and obtain

(a"tw0‘Ph)2— ( a ' tw0*ph)2 =  T ( "tvvo-ph two-ph

(7.254)

(7.255)

This implies that always
a ■twi’0-ph ^'two-ph^ (7.256)

From (7.246) and (7.247) we obtain, respectively,
,2

and

(  v ' ) 2 ( v'
V fl"one-ph 1 I fl'one-ph

■ c? c; 2
M d T )'one-ph

CP
"one-ph

CP
)  \  d p  1

I I 2 (
t

V

V a "one-ph )  { a 'one-ph

S 2
■ +  ( « > ' -.'one-ph

CP
"one-ph

CP

relate the values of the

d * T
d p 2 ]  (7.257)

d 2p (7.258)

left and right boundary curves on the one-phase side.
7.8.9. F inally, we derive an equation relating the values of the 

Joule-Thomson coefficient on boundary curves. We showed earlier 
(Eqs. (7.109) and (7.110)) th a t everywhere in the two-phase region 
the Joule-Thomson coefficient p is the same and is

d Tjjtwo-ph — j^'two-ph _  j_t' two-ph - ,
d p  ‘

Taking this into account, from (7.111) and (7.112) we easily find 
tha t

^"one-ph__|^'one-ph - . 1 dh'
,'one-ph d p

1 dh'  
"one-ph d p (7.259)

Using (2.8) and (7.109), we can write this relation in another form:
^''one-ph_^'one-ph 1 dh'  1 dh"

..two-ph 'one-ph d T  "one-ph d T  ’
P P p

(7.260)



190 The Differential Equations of Thermodynamics

This equation relates the values of p on the left and right boundary 
curves on the one-phase side.

7.8.10. We have found equations relating the values of basic 
therm odynam ic quantities on the left and righ t boundary curves. 
The same approach can be used to obtain equations relating any 
other therm odynam ic quantities.

The relations of th is type are useful for the cases where the values 
of a therm odynam ic quan tity  are obtained independently on the 
left and right boundary curves and we w ant to check how much these 
values are related therm odynam ically. They are also useful when 
we know the values of a therm odynam ic quan tity  on one of the bound­
ary curves (usually on the liquid-phase side) and wish to calculate 
it  on another boundary curve.

7.9 Equations for Second-Order Phase Transitions
7.9.1. In  1933 Paul Ehrenfest introduced the concept of a second- 

order phase transition.
An ordinary phase transition (according to Ehrenfest’s classifica­

tion, the first-order phase transition) is characterized, as we noted 
in Sec. 7.1, by a discontinuity in the first derivatives of (p:

a n d  S = - ( l f ) p -
The quantities v and s change discontinuously from the value in one 
of coexisting phases, v(1) and s(1), to the value in another phase, 

and s(2).
Ehrenfest called a transition  in which the first derivatives of a 

therm odynam ic potential are continuous a second-order phase tran­
sition, i.e.

i;(1) =  id2) (7.261)
and

sP) =  s<2>, (7.262)

while the second derivatives of the potential change discontinuously, 
for instance,

' d2q> '
, dT2 Jp> (7.263)

( £ ) , = I dp2 I T  ’ (7.264)

( d v ) -  1r d2<p \ (7.265)\ d T  Ip \\ dT  dp I •

The physical meaning of a second-order phase transition  is beyond 
the scope of th is book. Here we are interested only in the differential
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equations relating the second derivatives of a thermodynamic po­
tential for coexisting phases in the event of a second-order phase 
transition. In other words, we wish to obtain equations determ in­
ing the discontinuity of thermodynamic quantities on the line of 
a second-order phase transition.

In a second-order phase transition, just as in an ordinary phase 
transition, the two phases in the p, T-diagram are separated by a 
transition curve. In the p,v-, T,v-, T,s-, and p,s-diagrams we see 
tha t in a second-order phase transition the two phases are separated 
not by a two-phase region, as in an ordinary phase transition, but 
by a transition curve, since v and s at the point of a second-order 
transition change continuously.

We note tha t the transition from one phase to another across a 
second-order phase transition curve in the p,v-, T,v-, T,s-, and p,s- 
diagrams is sim ilar to a first-order phase transition from a one- 
phase region to a two-phase region across a boundary curve (left or 
right). Indeed, in both cases the second derivatives of the potential 
change discontinuously. This implies tha t the relations describing 
the discontinuities in these quantities are sim ilar in structure for 
both the boundary curves of an ordinary phase transition and the 
curves of a second-order phase transition.

7.9.2. The following second derivatives of the thermodynamic 
potential undergo a discontinuity on the second-order transition 
curve:

(
c^p \
or- ) T,=  H

' ds \
\ dT ) p

C p

T ’ (7.266)

(■
d2(p \
dp- I t

=  ( — \ \ d p  I t '
(7.267)

d2cp
dT dp ~

/ dv ' 
'  I dT ) , — ( - £ ) T ’ (7.268)

r —L dT ■(1 )' 1 =p j v - ( # ) . -
cv
T ’ (7.269)

m J (7.270)

[ ■ k m j . = ' ( - £ ) . — (7.271)

' dtp \
. dp I t ] , = - I dv 1 T - m . . (7.272)

d<£ \ ' 
dT ) p .] , = - ■I— ) =  -\ do I p - m . (7.273)

The same is true, naturally , for the inverse quantities.
In Chapter 6 we obtained the equations tha t give the discontinui­

ties of these quantities, namely Eqs. (6.11), (6.13), (6.15), (6.16),
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(6.18), (6.20), (6.21), (6.23), (6.25), (6.26), (6.28), (6.30), (6.33) 
through (6.37), and (6.38) through (6.43) if the transition occurs in 
p ,v ,T  space or Eqs. (6.44) through (6 .66) if it occurs in £,,w,T space. 
From these equations we can derive a group of relations tha t play 
the same role for second-order phase transitions as the Clausius- 
Clapeyron equation does for ordinary. These relations give the slope 
of the second-order transition curve in the p,T-,  p,v-, T,v-, p,s-, 
T,s-, and u,s-diagrams.

From (6.31) and (6.32) it follows th a t5
/ d v  \ (2) / d v  \ (1)

d p  __ cp2, *~ cp1>_____________   \ W l p  ~ [  W ) p  , -  2 7 4 v
d T  l — \ {2) / _ 0 M (1)'l /_du_\(2) _ /  5w_\(l) J 1 ' '

T l \ d T  ) v  ~ \  d T J v  \  I d p ) T \  d p  I t

which is known as the Ehrenfest equation. Sim ilarly, from (6.15) 
and (6 .21) we find that

(<>P_Y2)_  ( dT \ (2) I dT ) (1)
d T  _  \ ~dT~ Is \  d T  ) s _  \ dv  l p \ d v  ) p °75'>
d v  ~~ / J M (2)— ( — V 1} /_ 5 T _ \(2 )_  i  d T _ \ W  ’ K1 - * 1 0 )

[  d T  I s  \  d T  I s  \  d p  ) v  \  d p  /„

from (6.13) and (6.26) that
T r ( dp \ ( 2 )  /  dp \ ( i ) - i

d T  _  L \  d T  Iv \  d T  J v J
d v  ~

from (6.20) and (6.23) tha t 
/ d T  \ (2) / e T  \(D

d p  _  _  \ d p  I s  I d p  )  S _  __
d s  I d v  \(2) / d v  \ ( ! )

\ d p  )  s \  d p  )  s

I dJL V2)— / dP \ (1)
_  \  dv I t \ dv ) t

I dp  \ ( 2 )  /  dp  \  C l )
I d T  ) v  I d T l v

4 ( - ) 12>- ( - ) ,1)3
(  d T _ \ & ) _  (  d T _ \ U )  * 
\ op ) s \ dp Is

(7.276)

(7.277)

from (6.18) and (6.28) tha t
( dT_y2) / dT \ ( i )

dT _  _ I dp I p I dp ) y
ds f dv \ (2) / dv

[ dT ) s \~dT Is

and from (6.25) and (6.30) that

*  4 ( v r - ( - n
\ (2)_/ dT_ \ (1)

\ dv ) s \ dv } s

/  d T  \(2) / d T  \ CD
\ dv  ) p  V d v  ) p
I d p  \ (2)__/ d p  \ (1) ’
I~dT )s V~dT~ 1 s

/  d T  U2) / d T  \  (1)
\ dv  ) s  I dv  ) s

\  dv  / s \ dv  J s

(7.278)

(7.279)

6 The superscripts (1) and (2) denote the first and second coexistingjphases,
respectively, at the point of a second-order transition.
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From Eqs. (6.38) through (6.41) we can obtain equations giving the 
slope of the second-order transition curve in the p,T-, T,v-, p,s-, 
and z;,s-diagrams:

and

£ = ] / :

V
dp

* ]/

ds y

C ( 2 ) ■ n
cp c

CL)
V

' i m ; -
/ dv \ d n
\ dp I t  J

5

/ .C2> 0 (1) 
°v V

dp_ U D -j 
dv ) t  J

J

' T \ (  1 v 2)
I I Cp i U J  J
/ dv \ (-) / 
\ ~ d p ) a  ~ \

dv u n  
dp Is

5

T \ (  1 y 2) I 1 \ (1)
[ \ Cy J \ Cv 1 _

\ dv j s \ dv } s

(7.280)

(7.281)

(7.282)

(7.283)

Sim ilarly, for the second-order phase transition in the \ ,w ,T  space 
we can obtain relations giving the slope of the transition curve in 
the t ,T- ,  c,w-, T,w~, l,s-, T,s-, w,5-diagrams.

From (6.44) and (6.47) we find that

dl ci2> - c l nC C
/ die
I d T I f - f dw

C d T r :
dT

T
7 d w  \ (2) / dw  \  (1)1

) (2)-
/ d w kd) ’

a r  Jt l a r  J \ 51 T \ dl T

(7.284)

from (6.46) and (6.50) that

/^ L V 2)— ( d*
dl  _  I dT Is \ dT )s
dw 1 dw \(2) / 8w \U)

I  H r  i s  \ ~ d T ~ ) s

l_dT_Y2) _  / dT \ ( l )  
I dw J g \ dw I g
(J>T_Y2) __ ( dT \ (l )
I dz, j w I dl I w

(7.285)

from (6.45) and (6.53) tha t

1 3 — 0 4 2 7

\ dw j T \ dw ) T
( J L Y 2)_  ( J ! L V l) ’
I dT ) w \ dT ) w

(7.286)
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from (6.49) and (6.51) that

A  a r - w r
ds ( d w \ i 2) (  d w  \ (D  / d T  \(2) / d T  \ ( P

(  d \  I s  \  d l  I s  \  d \  I s  I d l  I s

from (6.48) and (6.54) that
/ j T _ \ ( 2 ) _ / _ a r _ \ ( D  / d T  \(2) / d T  \ (D
( d\ )w \ dl )w __ I dw ) I I dw 11
/ dw \(2) T~dw~\(1) / dl  \ ( 2) / dl  \ C1) ’
( I F I s  ~ (  d T  I s  \  e r  I s  \  d T  I s

(7.287)

dT
ds

(7.288)

and from (6.52) and (6.55) th a t
r / 1 \<2) / 1 \ (1) 1 ( dT \ ( 2) / dT \ ( l )

T [ (  cw ) ( cw ) J   \ dw ) s \ dw ) :
~  / _ £ L ) (2)_ / _ ^ L \ (1) / dl  \(2) / dl  \ ( n

[ dw J s I dw j s \ dw ) s \ dw ) s

From (6.61) through (6.64) we obtain, respectively,

dw
ds

(7.289)

dl
dT

cV-‘ — ca)
r / dw 1(2) r dw \ d )
L I d\ I t  I  dl I t  .

dw
dT - V

M 2) _r(l)cw Lw

L \ dw I T \ dw I t  J

(7.290)

(7.291)

- = i A -ds y

\ ( 1 \(2) /  1 \ ( 1 ) 1
L V ci 1 i  c i I J
( dw (2) /  d w \ ( D
( d l s ~ \ d l J .

(7.292)

and

dw
ds

T r  / 1 )
(2) / 1 \ (1) 1

l \ Cw J \ Cw > J

\ dw I s \ dw I
dl  \d> 

£

(7.293)

These are the basic relationships for second-order phase transi­
tions.

7.9.3. Now we will show how these relations can be applied to a



7. Phase Transitions 195

second-order phase transition in a superconductor w ithout an exter­
nal magnetic field.

From (7.31) it follows th a t the heat of the phase transition from 
the superconducting to the normal state is

„  T H cr^ su p e r  d H cr tn o n / \
q -  47i W ~ ‘

This shows that when H CT =  0 (i.e. at T  =  T cr), the heat of the 
phase transition vanishes (experiments show th a t dHCTidT  is finite 
for any tem perature). Thus, an ordinary phase transition in a super­
conductor w ithout an external magnetic field becomes a second- 
order phase transition. On the curve representing the transition 
from the superconducting to the normal state the point where H CT =  0 
is singular.

Equations describing this second-order phase transition can be 
obtained from (6.44) through (6 .66) if we assume th a t £ =  — H  
and w =  /. In  particular, Eq. (6.61) for the discontinuity of the 
heat capacity ‘with the generalized force kept constant can be w ritten  
for this case as

super  n o rm  rp f  /  9) supe r  \
cH - c H = - T \ _ { s i r ) T

__ /  9}norm  \  1 /  d H Cr \  ^
I  dH ) t \ \  d T  1 ' (7.295)

Bearing in m ind th a t, in accordance w ith (7.30)

/ s u p e r  =  ys u p e r 7 ^ / 4 n

and th a t, as we notedfin Sec. 7.2,
/ n o r m  =  0 ,

we obtain

9j  supe r  \  
dH ) t

1
4a [( ^ysuper

dH ) T H  y s u p e r J

(7.296)

(7.297)

and

( J £ i F - ) r = 0 - (7-298)

Experim ents show th a t the specific volume of a superconductor in 
the superconducting state  varies very little  w ith the strength of an 
external magnetic field (there is no m agnetostriction); in other words,

/ ̂ ŝui)er_ \
I  dH I t

13*

(7.299)
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Taking into account (7.297) through (7.299), from (7.295) we obtain

This equation determines the magnitude of the discontinuity in 
the heat capacity cnorm for the phase transition from the supercon­
ducting to the normal state in the absence of an external magnetic 
field. It is called the Rutger equation and shows that, since its right- 
hand side is always positive, the heat capacity cnorm at the phase 
transition from the superconducting to the normal state drops sud-

nor rn (7.300)

denly.



8 The Mathematics 
of the Critical Point

8.1 Thermodynamic Relations for the Critical Point

8.1.1. The point on the saturation line where the liquid and vapor 
phases become indistinguishable is known as the critical point. I t 
is the final point on the line of the liquid-vapor phase transition, 
which begins a t the triple point. We will denote thermodynamic 
parameters at the critical point by p cr, T cr, vCT, etc.

In accordance w ith what we have just said,
v" — v' =  0 (8 .1)

at the critical point and, hence,
v" =  v ’ =  vCr. (8 .2)

The heat of vaporization, r, also vanishes a t the critical point.
This follows from the Clausius-Clapeyron equation (7.198). If we 
write (7.198) as

r = i r  (8.3)

combining this w ith (8.1) and bearing in mind that dp/dT  cannot be 
infinite, we see tha t a t the critical point

r  =  0. (8.4)

From experiments we know that the critical isotherm (T CI =  const) 
has in the p , ^-diagram a horizontal inflectional tangent a t the criti­
cal point and, hence,

( -£ £ = < > ■  <8-8>

( 0 ) c;=°- <8-6>
Sim ilarly, experim ental data shows tha t the following lines have 

at the critical point a horizontal inflectional tangent: an isobar in 
the 7\i>-diagram, so tha t

(8.7)
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and

<3 
to

to II o (8 .8)

an isotherm in the p,s-diagram, so that

( % ) > °
(8.9)

and

( # ) " = « •
(8 .10)

an isobar in the 7\s-diagram, so tha t

(8 .11)

and

( i
(8 .12)

an isobar in the 7\ft-diagram, so tha t

(lr)c;=o (8.13)

and
/  \ cr_ o
I I p  ’

(8.14)

finally, an isotherm in the p , ^-diagram, so that

Cb
l C

b

II o (8.15)

and

/  d‘ p  r r = o
[ dh1 I t

(8.16)

Combining (8.11) w ith (5.100) or, which is the same, 
(5.106), we find that

(8.13) w ith

**
5 II 8 (8.17)

We note that the derivative of pressure on the saturation line 
with respect to temperature a t the critical point (dp/dT)cr and the 
derivative of pressure w ith respect to tem perature on the isochore 
v =  vCT a t the critical point (dp/dT)°r are finite; th is is clear from 
the physical meaning of these quantities.

The behavior of the corresponding curves in the phase diagrams at 
the critical point is schem atically shown in Fig. 8.1.



8. The Mathematics of the Critical Point 199

We note th a t Eqs. (8.7) through (8.17) do not represent different 
independent properties of a substance at the critical point. In the 
final analysis, all these relations describe one experimental fact: 
th a t the critical isotherm in the p,y-diagram has a horizontal inflec­

tional tangent at the critical point; whence, we can obtain Eqs. 
(8.7) through (8.17) from (8.5) and (8 .6).

Let us show this by an example. We will obtain (8 .7) and (8 .8) 
from (8.5) and (8 .6). From (2.68) we see that

Since, as noted earlier, (dp!dT)tT is finite, combining (8.18) with 
(8.5) yields (8.7).

Next, we determine the value of (d2T/dv2)p. Differentiating (8.18) 
w ith respect to v w ith p  kept constant, we obtain

d*T / dp \ f " j
dp dv \ dv I t \ dp I v L d v  \ dv / T j p ' (8.19)

In accordance w ith (2.71) we write

r 1 1 + r i  ( * L \
L dv \ dv I t  Jp L dv \ dv IT J t '  L dT \ dv J t J v  \ dv I p ’

or, which is the same,

[ J _ ( _ d p _ \  1 = (_^p_)  , d2p f dT \
L dv \ dv / T j p  I dv- / T ' d T d v K  dv } p'

( 8 .20)

(8 . 21)

Taking into account (8.21), from (8.19) we obtain

(JUL) = ____d2L- (^£-) + —P ( —  ) . (8 .22)
\ dv- Ip dp dv \ dv ) t ' \ dv2 ) t ' dT dv \ dv Ip

An analysis of the experim ental p,v ,T-data for the near-critical 
region shows unambiguously th a t (d^T/dp dv)CT and (d2p/dT dv)cr
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are not infinite. 1 Taking this into account and bearing in mind (8.5), 
(8 .6), and (8.7), from (8.22) we obtain (8 .8).

Sim ilarly, if we combine the Maxwell equation (4.4a) w ith (8.7), 
we obtain relation (8.9) and so on.

8.1.2. E xperim ental data shows (see Fig. 8.1) th a t the to ta l de­
rivative  of the specific volume on the saturation  line w ith respect to 
tem perature, d v J d T , become infinite at the critical point. I t  is ob­
vious tha t

lim
T —T a cr

dv'
dT (8.23)

and

lim  -
T ~+T a cr

dv"
dT ~  °°  ‘ (8.24)

Since according to (2 .8)
dv   dv dT
dp dT dp ’ (8.25)

and, as already noted, dT/dp  is finite a t the critical point, combining 
th is equation w ith (8.23) and (8.24) yields relations for dv'/dp and 
dv'/dp sim ilar to (8.23) and (8.24).

Sim ilarly, ds0fdT  is infinite a t the critical point, and here (see 
Fig. 8 .1)

lim  r  =  oo, (8.26)
rp  ̂ rp (XI-* rr  ̂er

lim
T -*T  a 1 cr

ds"
dT =  — oo (8.27)

Combining these w ith (7.18), we find tha t
lim  c’s =  oo,

Tc - Tcr
lim  c's — — oo.

T  -+ T  a cr
Since

ds _ ds dT 
dp dT dp ’

tak ing  into account the above rem arks, we obtain relations for ds'/dp 
and ds"/dp sim ilar to (8.26) and (8.27). The situation  is the same with 
dh0/ d T , dua/ d T , and df0/dT  a t the critical point.

1 Whether these quantities are zero or nonzero remains open to question, 
but it is clear that they cannot be infinite.

(8.28)

(8.29)

(8.30)
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From the given relations it  is clear (see Fig. 8.1) that
dT
dvG ) = o ,

/ cr
( 8 .3 1 )

/ dp 
\ dl'o .) „ = ° -

( 8 .3 3 )

dT
dsQ ) = 0 ,  

/  cr
( 8 ,3 2 ) / dp 

\ dso L = ° - ( 8 ,3 4 )

There is ail interesting and im portant question concerning the cur­
vature of the boundary curve at the critical point, i.e. the values- 
of the second derivatives, such as 
(d2T/dv2)CT and (d'-T/ds2)cr. Experi­
m ental data (see Fig. 8.1) would seem 
to show, a t first glance, th a t these 
derivatives are finite and negative at 
the critical point. However, it is a r­
gued tha t (d2T/dv2)cr and (d2T/ds2)cr 
and other sim ilar derivatives are 
zero. This question cannot be solved 
unambiguously due to the reasons to 
be discussed in Sec. 8.2.

8.1.3. Experim ental data shows tha t 
at the critical point the saturation 
line in the /^T-diagram  matches 
sm oothly, w ithout a salient point, 
the critical isochore (vCT =  const) (Fig. 8.2). This means th a t

( #  )„= (!)!„ • <8-35>
which is known as the Planck-Gibbs equation, or rule.

Extensive experimental data for a great variety  of substances prove 
the valid ity  of Eq. (8.35). Let us derive this equation analytically.

In accordance with (2.81) we can write

- I r = ( l r ) . 0 + ( i r ) r 7 r -  <8-36>

From (8.5), (8.22), and (8.23) i t  follows that for the critical point 
there appears an indeterm inate form (Too in the second term on the 
right-hand side of (8.36). We will try  to evaluate the indeterm inate 
form by L ’H osp ita l’s rule. To this end we write (8.36) as
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and take the derivatives of the num erator and denominator on the 
right-hand side of this relation. The peculiar feature is tha t the numer­
ator contains the partial derivative w ith respect to v w ith T kept 
constant, while the denominator contains the total derivative w ith 
respect to v along the saturation line. But i t  is obvious tha t we must 
take the derivative of the same form of both the num erator and denom­
inator. Therefore, we take the to tal derivative of the num erator 
and denominator writh  respect to v. Then (8.37) yields

rlT  [ % - { i k Y A = ■1 1 cr 1 cr

d / dp \ 
dva \ dv )

d?T_
(8.38)

For the quantity  in the num erator on the right-hand side of (8.38), 
i t  follows from (2.81) that

J _  ( l £ - . V  = [ J L / i M a 1 | f  d t dp y  -I 
dva \ dv j t  L dv \ dv ) t  JT ' L dT \ dv / t  J

or, which is the same,

d / d p _ Y  — I d2p Y  / d2p Y  dT
dva V dv I t  I dv2 I t  1 \ dT dv) dva 

If we combine this w ith (8.38), we can write

( £ p_ Y  .j. I d2p >

iT  [ - if -  ( i f )!]= ““T-Tcr cr daT
dv%

dT 
v dva ’ (8.39)

r
(8.40)

dT
1 dva

(8.41)

Taking into account (8 .6) and (8.31) and bearing in mind tha t 
dd2pldT dv)Cr is finite and (d2T/dv2)cr is nonzero, from (8.41) we obtain 
the Planck-Gibbs equation (8.35).

We note tha t this derivation is valid so far as (d2T/dv2)Cr is nonze­
ro. Otherwise on the right-hand side of (8.41) there appears an inde­
term inate form 0/0 tha t cannot be evaluated. However, the b rillian t 
experimental verification of the valid ity  of the Planck-Gibbs equa­
tion (8.35) can be considered an argument for the statem ent that 
(d2T/dv2)cr is nonzero. Nevertheless, the given derivation of the 
Planck-Gibbs equation cannot be regarded as rigorous because the 
value of (d2T/dv2)CT remains undefined.

8.1.4. The Planck-Gibbs equation can be generalized to caloric 
state surfaces. By the method sim ilar to the one given above we can 
show that
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This relation implies tha t a t the critical point the lines s =  const, 
u =  const, h — const, and /  =  const, just as the critical isochore, 
have a common tangent w ith the saturation line.

These relations are completely verified by experim ental data 
(Fig. 8.3). To derive these relations we must bear in mind the notes 
on the curvature of the boundary curve at the critical point th a t 
were made for the derivation of Eq. (8.35).

8.1.5. The experim ental data on the p^T -dependence  shows tha t 
the critical isochore near the critical point is almost a straight line.

MPa

Fig. 8.3 Fig. 8.4

This is verified by the experim ental data on the heat capacity cv: 
the values of cB on the critical and near-critical isotherms on the 
c , i;-diagram pass through the maximum a t v =  vCT (this is illu stra t­
ed by the experim ental data for water in Fig. 8.4); consequently, 
in the near-critical region

( i v ) x  =  ° ’
(8.43)

and since according to (5.128)
/ dCv \ rp I \
\  d v  ) T \  d T 2 / v ’

(8.44)

i t  follows tha t near the critical point

l £ ) . e r “ °- ' <8 -45>

(W ith the increase in tem perature the critical isochore becomes in­
creasingly steeper.)

8 .1 .6 . We also note th a t Eq. (5.165)
/ d p  \  __ / d p  \ ___ T  i  d p  \2
\  d v  ) s \  dv  ) T cv \ d T  I v
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combined with (8.5) and (8.35) for the critical point assumes the 
following form:

8.1.7. The thermodynamic behavior of pure substances at the criti­
cal point has so far been studied insufficiently. Essentially, we know 
very little  about the critical point. Above we noted what facts can 
be regarded as firmly established: at the critical point the first and 
second derivatives of pressure w ith respect to volume or entropy 
at T  constant and of tem perature w ith respect to volume or entropy 
at p constant vanish, the heat capacity cp is infinite, and the satura­
tion line and critical isochore m atch sm oothly (the Planck-Gibbs 
rule). This scant list probably exhausts all the reliable facts which 
we have relating to a thermodynamic analysis of the critical point 
of a pure substance.

Much more extensive is the list of questions that have not yet been 
answered:

(a) Do the derivatives (d3p/dvz)xT, (dipldvi)(̂ ,  etc. have zero or 
nonzero values?

(b) Does the mixed derivative (d~p!dT du)CT have a zero or nonzero 
value?

(c) Do such quantities as the heat capacity cv and the sound veloc­
ity  a undergo a continuous or discontinuous change when passing 
through the critical point?

(d) W hat is the behavior of the curvature of the boundary curve a t 
the critical point, i.e. are the second derivatives (d'2T/dv2)crr 
(d2T/ds2)CT, etc. nonzero, and what is the saturation line curvature 
at the critical point in the j^T-diagram , i.e. is the value of (d2p /d T 2)cr 
zero or nonzero?

(e) Is the heat capacity cv finite or infinite at the critical point? 
And correspondingly (see Eq. (8.46) w ith due regard for (5.191)) 
is the sound velocity equal to zero at the critical point?

In spite of the categorical statem ents of some authors, a detailed 
analysis shows tha t there are no unambiguous answers to these and a 
number of other related questions.

The reader probably noticed tha t in this section we often use such 
phrases as “experimental data shows th a t” while the differential 
equations of thermodynamics are almost not used. We must under­
stand th a t practically all relations given in this section are no more 
than a simple statem ent of the results of experiments. The few rela­
tions derived in this section are either not flawless from the point of 
view of the strictness of their derivation (the Planck-Gibbs equation 
is not flawless because we do not know exactly whether (d2T/dv2)CT 
differs from zero, and Eq. (8.45) because we do not know whether

(8.46)
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ccrT is finite) or useless for an analysis of the critical point (Eq. (8.46) 
because we are uncertain about the value of c"). The means tha t we 
have at our disposal for analyzing the critical point are scanty, while 
for an analysis of the behavior of a substance on the boundaries 
and in a two-phase region there is a wide variety  of thermodynamic 
relations.

W hat is the reason for this peculiarity of the problem of describ­
ing thermodynamic properties of a substance at the critical point 
among other problems of thermodynamics? Let us examine these 
questions in detail.

8.2 Describing the Thermodynamic Properties 
of a Substance at the Critical Point

8.2.1. The complexity of the problem of a thermodynamic descrip­
tion of the critical point given in Sec. 8.1.7 is explained by the sin­
gular behavior of the critical point on the thermodynamic state sur­
face of a substance. If we use differential equations for the critical 
point, which are valid for all the other states of a substance, there 
appear in many relations (as a result of this singularity) indeterm i­
nate forms that cannot be evaluated. Due to these forms the m athem a­
tical tools of thermodynamics begin to “slip” at the critical point. 
This difficulty is basic: it is not that unambiguous proof of the sta te­
ments of the thermodynamics of the critical point under discussion 
has not been found as yet, as a nonspecialist may think, but tha t in 
principle ordinary differential equations do not enable us to find such 
proof or relations for the critical point by a rigorous method.

Here is an example to show that it is useless to try  to solve the 
problems of thermodynamics of the critical point w ith the help of 
ordinary differential equations of thermodynamics. We will try  to 
establish whether the discontinuity in the heat capacity cv retains 
its value or vanishes a t the critical point when crossing the boundary 
curve.

Recall tha t the value of the discontinuity in cv on the boundary 
curve is determined by Eqs. (7.84) and (7.86), which we can write 
thus:

a  two-ph a one-pli
Cv Cv =  T (8.47)

If we combine this with (8.5), (8.23), and (8.24) in order to determine 
the quantity  Acv =  c° tW0'Ph — c£one' ph at the critical point, we see 
th a t on the right-hand side of Eq. (8.47) there appears an indeter-



206 The Differential Equations of Thermodynamics

m inate form 0- oo. Let us evaluate this indeterm inate form by L ’Hos­
p ita l’s rule. If we write Eq. (8.47) as

I dp \o  
.0 one-ph o two-ph I —— I
Lv ~~Lv \ dv I t

T t dT V* 1
V dv q J

(8.48)

we can differentiate the num erator and denominator on the right- 
hand side of this relation by taking the to ta l derivatives with re­
spect to v:

a  one-ph a two-ph 
i • cv Lvlim  ------------- 7p----------

T  —T  11 1cr

Using (8.40), we can transform th is relation to

: lim
T - * T cr

d / d p  \ o
dva i dv  ) T

2 N d*T (8.49)
dva dv*

lim
T —T cr

o one-ph a two-ph

T

/ d*p Y  , / d2p dT 
, .  \ dv2 ) t ' V dT dv ) dva

„ dT d2T1 Qj> / ■ - . - —
dva dv*

(8.50)

Taking into account (8 .6) and (8.31) and the above-mentioned remarks 
about the quantities (d2pldT dv)r-r and (d2T/du2)CT, we see that on 
the right-hand side of Eq. (8.50) there again appears an indeterm i­
nate form 0/0. Further attem pts to evaluate this indeterm inate form 
do not yield a positive result.

Thus, the m athem atical tools of thermodynamics do not enable us 
to evaluate indeterm inate forms in the ordinary thermodynamic re­
lations if we apply them to the critical point. Meanwhile, even today 
some authors state in all sincerity th a t using the ordinary differential 
equations of thermodynamics they have managed to formulate cer­
tain  new conclusions about the thermodynamic properties of a sub­
stance a t the critical point. U nderstandably, a thorough analysis al­
ways reveals some mistake in such works. In this connection we must 
realize th a t if any work claims to have obtained new conclusions about 
the properties of substances at the critical point using ordinary 
differential equations of thermodynamics, it must contain a more 
or less veiled m athem atical mistake.

8 .2 .2 . We must call atten tion  especially to a typical m athem atical 
error often encountered in works on the thermodynamics of the 
critical point. The reason for this error is a stereotype tha t researchers 
acquire while studying m athem atical analysis. As we know from anal­
ysis, the second derivative of a function a t the point of inflection is 
zero. B ut this statem ent has one exception im portant for the thermo­
dynamic treatm ent of the critical point.



8. The Mathematics of the Critical Point 207

We wrote relation (8 .6) and others sim ilar to it for the critical 
point on the basis of the [above-mentioned statem ent of m athem ati­
cal analysis. I t  may seem tha t we can write (d2v/dp2)r =  0 for the 
critical point w ith the same degree of reliab ility  as we did for (8 .6), 
since here we also speak of the second derivative a t the point of in­
flection of the function. The situation  w ith (d2vldp2) ^ , however, is 
far more complex than it may seem at first glance. Let us examine 
the (dv/dp)T versus p  and the v versus p  dependence on the c ritica l

isotherm (Fig. 8.5). The graphs in Fig. 8.5 show th a t since the quan­
tity  (dv/dp)T becomes infinite when approaching the critical point 
both from the left and from the right, in other words, undergoes a 
discontinuity of the first kind a t the critical point, the derivative 
(d(dv/dp)T/dp)T =  (d2v/dp2) T is not defined at the critical point. The­
refore, the relation (d2v/dp2)*£ =  0 is absolutely unjustified. I t  is 
obvious th a t the situation is the same with all the functions tha t 
have a vertical tangent at the point of inflection, i.e. an infinite first 
derivative. And since, as already noted (see Fig. 8.1), the critical 
isotherms in the v,p-\ s,p-, and ^,p-diagram s and the critical iso­
bars in the u, T-, s, T-\ and ^,T-diagram s are just such functions, 
we m ust always bear in m ind this characteristic feature when applying 
thermodynamic relations to the critical point.

8.2.3. The following question is in order. If the differential equa­
tions of thermodynamics do not make i t  possible to arrive a t unam ­
biguous conclusions concerning the properties of a substance at 
the critical point, then why cannot we analyze these properties by a 
precision experiment?

Unfortunately, the accuracy of experim ental data rapidly dim in­
ishes when approaching the critical point. This is explained not by 
an imperfection of measuring devices but by difficulties of a funda­
m ental nature. The point is tha t for an overwhelming m ajority  of 
therm odynam ic quantities the so-called reference error of the meas-
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urecl quantity  becomes infinite with the approach to the critical point. 
Therefore, we cannot overcome m athem atical complexities solely by 
a direct experiment.

8.2.4. We cannot discuss here the interesting attem pts to describe 
the properties of a substance at the critical point by the methods of 
statistical physics as well as by the methods of scaling theory be­
cause, first, this is beyond the scope of this hook and, second, the 
degree of reliability  of the results obtained by these methods is not 
well-defined.

8.2.5. But how can we advance in describing the thermodynamic 
properties of a substance a t its critical point? Progress in solving this

problem can be achieved only by 
developing special m athem atical 
tools suitable for examining this 
singular point on the therm odynam ­
ic state surface of a substance.

8.2.6. In conclusion, one more 
interesting observation may be made 
concerning the problem of investi­
gating the critical point even 
though it may seem controversial. 
If at present we have no m athem at­
ical tools for operating with such 
singularities as the critical point, 

it  may prove effective to use formally nonrigorous lim iting 
relations (each time, of course, substantiating the possibility of their 
application). By lim iting relations we mean the application to the 
critical point of relations tha t are stric tly  valid however near this 
point.

Here is an example to explain this. As we have noted before, the 
quantity  (d2v/dp2) T cannot be defined at the critical point by ordi­
nary methods. However, everywhere along the line of inflection 
points of the isotherms (we know from the experiment th a t as this 
line approaches the critical point, it  smoothly matches w ith the 
critical isotherm: Fig. 8 .6) the equality

( f r ) r =  0 (8.51,

Fig. 8.6

is satisfied up to the critical point. Thus, (8.51) is valid arb itrarily  
near the critical point. B ight at the critical point the critical isotherm 
has an inflection, too. These circumstances, possibly, enable us to 
apply (8.51) to the critical point proper.

Next, it  is easy to notice the characteristic feature that the isobar- 
isotherms in a two-phase region acquire all the peculiarities typical 
of the critical point. Indeed, since in the p,v-, T,v~, p,s-, T,s-, 
p,h~, and T ,^-diagrams an isobar-isotherm in the two-phase region
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is a horizontal line, the relations sim ilar to (8.5) through (8.18) are 
valid for it. The relations (7.68) are sim ilar to Planck-Gibbs equa­
tions (8.36) and (8.43). This enables us to assume that the critical 
point, which is a lim iting point in the two-phase region, acquires all 
the peculiarities typical of isobar-isotherms in the two-phase region. 
This is not surprising, since the critical point is, in essence, a degen­
erated (subtended to zero) isobaric-isotherm al straight line. If this 
statem ent is valid, then, for one, for the critical point we can use 
the relation obvious for the two-phase region

and sim ilar relations.
Such methods of examining the thermodynamic properties of the 

critical point are less preferable, of course, than the one mentioned 
in Sec. 8.2.5, due to the insufficiently rigorous nature of the s ta te ­
ments used. However, until special m athem atical tools suitable for 
examining the critical point have been found, such a method may be 
considered justified and useful. The history of physics knows many 
cases when tools nonrigorous from the m athem atical point of view 
did not prevent obtaining conclusions whose substantiation  was given 
subsequently.

Such an approach can be justified by the analogy w ith the well- 
known method of determ ining a function at the point of d iscontinuity  
of the first kind. We recall tha t a discontinuity of the first kind is where 
the function is, stric tly  speaking, not defined but lim its to this 
function exist on both sides of the point of discontinuity; these lim ­
its are taken as the values of the function at the point of discontinui- 
ty.

In conclusion we stress once more tha t the observations made in 
Sec. 8.2.6 should not be regarded as indisputable. Nevertheless, their 
detailed discussion, which is beyond the scope of this book, could 
be useful.

Any further investigations of difficult but interesting problems of 
thermodynamics of the critical point are, obviously, of great im por­
tance.

(8.52)

1 4 - 0 4 2 7



9 Complex
Thermodynamic Systems

9.1 The Basic Thermodynamic Relations 
for Complex Systems

9 .1 .1 . In  Sec. 1.1 we agreed to call therm odynam ic system s perform ­
ing other work besides work of expansion complex system s. In  th is  
chapter we w ill consider only complex system s perform ing no m ore 
than two types of work sim ultaneously , one being the  work of ex­
pansion. For such systems the differential of work perform ed by th e  
system is given by (1 .8)

dL  =  p d V  +  Id W ,

or in (mass) specific values by (1.8a)
dl — pdv  -j- %dw,

where £ is the generalized force w ith  the exception of pressure, and 
W  (the mass specific value is w) is the generalized coordinate w ith  
the exception of volume.

The combined equation of the first and second laws of therm odynam ­
ics for the complex system s under consideration is w ritten  in  th e  
form (1.30)

T d S  =  dU  +  p d V  +  Id W ,

or in  (mass) specific values in  the  form  (1.30a)
Tds  =  du +  pdv  +  \dw.

The Maxwell equations for complex system s were obtained  in  Sec.
4.2. For mass specific quan tities these are (4.17), (4.18), (4.20), 
(4.21), (4.23), (4.24), (4.26), and (4.27); sim ilar equations are de­
rived for the entire system.

9.1.2. We w ill ob tain  differential equations describing the behav­
ior of different specific complex system s by a single m ethod, 
nam ely, by using Eqs. (1.30), or (1.30a), the Maxwell equations and 
the equation of sta te  of the given complex system .

D etailed  analysis of the therm odynam ic pecu liarities of complex 
system s exceeds the lim its  of th is  book .1 Therefore, below we give 
only the basic rela tions for different complex system s.

1 For detailed analysis of these problems see the book: V.V. Sychev, Com­
plex Thermodynamic Systems, Mir Publishers, Moscow, 1981.
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9.2 Systems in a Magnetic Field

9.2.1. We know th a t for a magnetic substance in a magnetic held 
the m agnetic held strength taken w ith a m inus sign, - / / ,  is the gen­
eralized force, I, and the m agnetization of the substance, /, is the 
generalized coordinate, w.

Hence, the combined equation of the first and second laws of ther­
modynamics (Eq. (1.30a)) for a system in a magnetic held is w ritten  
as follows:

T ds =  du +  p dv — H  dj. (9.1)

Combining this w ith the Legendre transform ation (3.48), we see 
that

T ds =  dli* — v dp -f- j  dH, (9.2)

where
h* =  u pv  -— H j , (9.3)

which is the enthalpy of a system in a m agnetic held (see Eq. (1.15a)).
In accordance w ith (4.17a), (4.20), (4.23a), and (4.26) we can write 

the Maxwell equations for a system in a magnetic held as

ds \
' W l j , (9.4)

— ) =  _  ds / ii, P { ST )I O H  Is, P ’ (9.5)

— ) = -ds I t , v
/ dT )
\ OH Jj, v ’ (9.6)

*>3 
—■ 11 ds \

dH ) r, p ‘ (9.7)

We know from physics tha t the equation of state of a magnetic sub­
stance that relates m agnetization to m agnetic held strength is w rit­
ten thus

7 =  JCff, (9.8)
where y is the mass specihc magnetic susceptibility.

9.2.2. If we combine (9.1) with (9.6) and (9.8), we find that

r, v (9.9)

Sim ilarly, combining (9.2) w ith (9.7) and (9.8), we obtain

14*

(9.10)
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Tlie heat capacities of a magnetic substance at H  and / constant 
(provided that the pressure of the surrounding medium is constant)* 
determined, according to (5.99), by obvious relationships

c» - > = r ( w ) „ . P (9.11)

and

c l - v  =  T  ( w ) j ,  p »
(9.12)

are related thus:

cIItV- c j<v- T  ( - f r ) r . p ’ (9.13)

or, which is the |same,

c n .r  — ‘ i .p  =  — T ( i r L . p  (~dr)j,to (9.14)

and
(9.15)

We derived these relationships in the same way as (5.109)-(5.111).
From i(9.8) it  is clear tha t the partial derivatives in Eqs. (9.13) 

through (9.15) can be written as

I —( dT
) =  J l ( L L  ̂
1H,  p  \ dT ) h,  p  *

(9.1G)

J L )
dH ) (9.17)

dH ' 
dT ,\ ~  11 ( dl )

' i. v X I ^  / j, P  *
(9.18)

We can easily show that
(  P
\  dH’

d-1 \
dT* I h . p  *

(9.19)

or, (which is the same,
I dcHt p 
[ dH ■) =  TH  

) t , -p
( J X \
I  dT'1 )  H , p *

(9.20)

and that

{ ^ r ) L  = - T
1 . p

( d2H \
\  dT* ) } ,  p *

(9.21)

* or

I fcJjjL) — ___L . r  1 ( d* \ 2 - . ( J l L )  1
( dj ) t , v  x LlUr/i .p [d T iJ j ,  PJ* (9.22)
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9.2.3. We know th a t magnetic substances in a magnetic field are 
characterized by the following thermodynamic effects.

(1) The magnetocaloric effect: the tem perature of a magnetic sub­
stance changes w ith the strength of the external magnetic field.

(2) The magnetostrictive effect: the body’s volume changes when the 
strength of the external magnetic field varies.

(3) The magnetoelastic effect: the m agnetization changes w ith the 
external pressure.

The magnetocaloric effect is characterized by the value of (dT/dH). 
It is evident tha t the value is different for different thermodynamic 
processes (with the change in the field strength) in which a magnetic 
substance is involved. Of particular interest is the magnetocaloric 
effect th a t occurs when the state of the substance is changedjadiabat- 
ically; here the effect is characterized by the value of (dT/dH)SiP 
In accordance w ith (2.67) we can write

Since c HtP is always positive, the sign of the adiabatic magnetocalor­
ic effect is determined by the sign of (dyJdT) H p . The magnetostric­
tive effect is characterized by the value of (dv/dH)p and the magneto­
elastic effect by the value of (dj/dp) H. Just as the value of (dT/dH) 
is, these values are different for different thermodynamic processes.

conditions.
We can easily establish a relationship between the values of (dv/dH)p 

for adiabatic and isotherm al conditions. According to (2.71) we can 
write

In the same way we can write a relation connecting the values of 
(dj/dp) H for adiabatic and isotherm al conditions:

Thermodynamics enables us to establish a one-to-one relationship 
between the m agnetostrictive and magnetoelastic effects. For the

(9.23)

whence, taking into account (9.7) and (9.11), wre obtain

(9.24)

or, taking into account (9.16),

(9.25)

These effects are of the greatest interest in adiabatic and isothermal
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systems under consideration (magnetic substances in a magnetic 
field), Eqs. (3.68a)

and (3.69a)

will be w ritten, respectively, as
d h *

( - r H  = '\  d p  I t , h

and

(9.28)

(9.29)

where h* is the enthalpy of a magnetic substance determined by 
(9.3).

According to (2.12) and (2.13), it follows from (9.28) and (9.29) tha t

H (9.30)

In a sim ilar manner, Eqs. (3.76a)

and (3.77a)

for the systems under consideration can be w ritten as

{ ¥ - )  = "\  d p  I s ,  H

and

where

cp* =  u +  pv  — Hj  — Ts

(9.31)

(9.32)

(9.33)

is the chemical potential of the magnetic substance (see (3.59a)).
In accordance w ith (2 .12) and (2.13), from (9.31) and (9.32) we 

obtain

T, I I  '
(9.34)
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Equations (9.30) and (9.34) enable us, for one, to calculate the 
variation in the volume of a magnetic substance w ith’ magneto­
striction as follows:

H

v(s, p, H) — v (s, p, H =  0) =  [ ( - j j f ) '  dir (9.35)

and
H

v ( T , p , H ) - v ( T , p , H  =  0 ) = ^  i H .  (9.36)
0

From (9.8) it follows that

(-&)»=*(-$-)*• <a37>
Taking into account (9.34) and (9.37) and bearing in mind that the 

value of (dx/dp) H can be regarded for all practical purposes inde­
pendent of H,  from (9.35) and (9.36) we obtain

=  (9.38)

and

v ( T , p , H ) - v ( T ,  p,  0 ) = - - ( 9 . 3 9 )

Sim ilarly, we can easily obtain the relations determ ining the var­
iation in / w ith the m agnetoelastic effect (the change in the exter­
nal pressure from p to p -f- Ap). From the obvious relations

p + A p

j (s ,  p +  Ap, — p, H) =  j  { ^ f ) SiHdP (9-4°)

and
p

P+Ap

H T . p  +  Ap, P, H ) -  j  ^ ) T Hdp,  (9.41)

taking into account (9.37) and the fact tha t usually (dx/dp)H 
changes little  with pressure, we find that

j (s ,  P  +  Ap, p, ff)  =  H ( $ ) " g Ap (9.42)

i ( T ,  p +  Ap, H ) - ) ( T ,  p, H) =  h ( - ^ - ) t h AP

and

(9.43)
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9.2.4. Superconductors are a special variety  of magnetic substan­
ces. In Sec. 7.2 we noted that the mass specific m agnetization of a 
superconductor in the superconducting state is given by Eq. (7.30)

/■ upef =  ^ B u p e r^ c r^ r t, ,

where i>super is the specific volume of a superconductor in the super­
conducting state and H cr is its critical magnetic field, and its spe­
cific m agnetization in the normal state, 7norm, is negligible as compared 
w ith 7super (i.e.'superconductors in the normal state are practically 
nonmagnetic). In other words, for superconductors

Xsuper — ^super/4-Jt (9.44)
and (9.45)

Xnorm = 0.
In Sec. 7.2 we discussed the Keesom equation (7.31) for the phase 

transition curve of a superconductor from the superconducting state 
to the normal:

3.H q p 4xt(7
dT ^super-^cr *

where q is the heat of this phase transition.
The relation tha t connects the values of the heat capacities 

c HiP of a superconductor in the superconducting and normal states 
on the phase transition line is im portant for the thermodynamics of 
superconductors (for the phase transition in a superconductor this 
relation plays the same role as the Planck equation (7.223) for the 
liquid-vapor phase transition).

According to (7.25), we can write for the phase transition of the 
superconductor

^norm ^super =  q f T .  (9 .4 6 )

If we take the total derivatives of the left and right sides of (9.46) 
with respect to tem perature along the line of phase transition, we 
obtain

^norm ^5Buper __ 1 ( d g ___ q_\
dT dT T \ d T  T ) '

(9.47)

Next, in accordance with (6.4) and (6.5), we can write

dsnorm _  / ds \norm / ds \norm dHCT 
dT \ dT ) h , p ^ {  dH ) h , p dT

and
dssuper _  / ds \ super / gs \ super dHcr 

dT ~ \ d T ) H , p + \  dH ) t , p dT 1

(9.48)

(9.49)
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or, taking into account (9.11) and (9.7),

/ d5 \( •'norm \
I OT ) H,

and

, -normdynorm _CH. p
dT ~  T

ds Super
-super d.

_CH. p | / Jsuper )
T ■ { OT )

dHcT 
P dT

dH nr
dT T ‘ \ OT ) u , p  dT

Using (9.50) and (9.51), from (9.47) we obtain

(9.50)

(9.51)

super -norm
C u ,  p  CH ,  p  -------

dq
dT

t  [" /  ^super \   / -^norm) "1
L I  OT j ii, p I OT ) H, p j

dH cr
dT

(9.52)-

Combining th is w ith (9.8), we find that

-super -norm q dq T ,, f  / ^Xsuper 5 
C H , P  - C H , p  = ~ T  — J T ~  T H  ) H>

__{ ^'/.norm ) ”1
V OT j H , p  J

dH cr 
P j  dT (9.53).

Taking into account (9.44) and (9.45), we can transform this rela­
tion to

super -norm   q dq , TH ( dvsuper \
c h . p  c h , p —  t  d T  - v  4 r i  [  g T  ) H p (9.54)-

Since we can
( d ^ s u p e r /dT) i i tp ~
Eq. (9.54) as

assume with a high degree of accuracy that 
0 a t the transition tem perature ,2 we can write'

-super norm 9 
C h ,  p  — CH ,  p  =  ~ f~

dq
dT ’

(9.55)

Next, from (7.31) we see tha t the heat of phase transition of a su­
perconductor from the superconducting to the normal state is

Q —
vBuper-d'H dH cr

4it dt
(9.56)'

Combining th is w ith (9.55), we obtain

super „norm 
CH ,  p  CH ,  p

^superT1
4ji

f d H CT\ H dvsupeT dHcT d*Hc r ~,
[ dT ) 1 ysuper dT dT +  1 dT* _ ’

(9.57)'

2 In this connection we recall that, in accordance with the Nernst heat, 
theorem, the derivative (dv/dT)7i decreases as we approach absolute zero and

l i m
T - * 0 K

=  0 .
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or, bearing in mind that at the tem perature of transition from the 
superconducting to the normal state  dvsupeT/dt ~  0 ?

super norm 
C H ,  p  —  C h ,  p

^super^ r / d l l cr \ 2 ^  d2IIcr ~|
4n L \ dT ) dT2 J * (9.58)

This is the relation connecting the values of c Hp in the supercon­
ducting and normal phases on the phase transition curve.

For the phase transition in a superconductor in the absence of an 
external magnetic field (H  =  0), Eq. (9.58) assumes the form:

super norm ^super^ / d H cr \2  
ch ,p  - c H,p . (9.59)

We discussed this relation (known as the Rutger] equation) in 
Sec. 7.9, Eq. (7.300), where we obtained it in a different way, as a 
particular case of the Ehrenfest equation (7.290) for the second-order 
phase transition (we recall tha t the phase transition of a supercon­
ductor from the superconducting to the normal state at H  — 0 de­
generates into a second-order phase transition).

Equations (9.38) and (9.39) combined with (9.44) and (9.45) enable 
us to calculate the variation in volume of a superconductor w ith 
m agnetostriction. These relations yield, first,

^superOn Pi 7/) r’super {s t P, 7/ =  0) =  —  ( “ ) s H (9 -60)
and

< W r(2 \ P, J ) - t „ p , ( r ,  p, =  H. (9.61)

Since (du/dp)s and (du/dp)T are always negative, the volume of a su­
perconductor in the superconducting state decreases as the strength 
of the external magnetic field grows. Next, since according to (5.122) 
the adiabatic compressibility is less than the isothermal compressi­
b ility , the volume of a superconductor in the superconducting state, 
as H  increases by one and the same value, decreases more in isother­
mal conditions than in adiabatic. Second, since according to (9.45) 
a superconductor in the normal state is nonmagnetic, the magneto- 
strictive effect here is zero.

Sim ilarly, if we combine (9.42) and (9.43) w ith (9.44), we see th a t 
for a superconductor in the superconducting state  the variation in 
the specific m agnetization due to the m agnetoelastic effect is given 
thus:

/super (5t 77) /super (^i Pi  7 7 )=  4jx~ ( ~dp ) s
(9.62)
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and
/ SUp e r ( 7 \  P  +  A p ,  / / ) - /super (T, P, II)

=  _ I l _ Ap . (9.03)
4 rr  \  Op J t , I I  x

For reasons sim ilar to those given above it follows that, first, the 
m agnetization of a superconductor in the superconducting state in­
creases w ith pressure and, second, this effect is greater in absolute 
value in isotherm al conditions than in adiabatic. From (9.42) and
(9.43), taking into account (9.45), we see that a superconductor in the 
normal state has no m agnetoelastic effect.

9.3 Systems in an Electric Field

9.3.1. We know th a t for a dielectric in an electric field the electric 
field strength taken with the minus sign, —E , is the generalized force, 
£, and the polarization of the dielectric, is the generalized 
coordinate, IF.

Hence, the combined equation of the first and second laws of ther­
modynamics (Eq. (1.30)) for such a system is

T dS =  dU +  p dV — E  (9.64)

and for volume specific quantities

T dsv =  duv -f- p  —  E  dP, (9.65)

where sv =  S / V 0, uv =  U/V0 and P  =  ^ / F 0, and F0 is the volume 
of the dielectric at certain fixed param eters T0, p 0, and E 0.

If we use the Legendre transform ation (3.48), we can write (9.64) 
and (9.65) as

and
T dS =  dH* — V dp +  $ d E (9.66)

T dsv =  dh* - VJ £  +  p  d E , 
V 0

(9.67)

where
H* =  U +  p V  -  E $ (9.68)

and
K  =  uv +  p — EP (9.69)

are the total enthalpy and the volume specific enthalpy, respective­
ly , of the system in an electric field.
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Equations (4.17c), (4.20b), (4.23c), and (4.26b) for the whole 
system assume the form

II>EZ}

( * 1 . )
I  0E I t y . v ’

(9.70)

\  _  
d S  )  e .  P I  3E Is, p' (9.71)

IIs* I d E  J y . v ’ (9.72)

Of ) e ,  p

/ OS '
\ d E  ) t , v '

(9.73)

For volume specific quantities the Maxwell equations have the same 
form except tha t s$  and S  are replaced by P and sv.

We know that the polarization of a dielectric (the electric dipole 
moment per unit volume of the dielectric), P, is related to the 
electric field strength E  by

P =  aE,  (9.74)

where a  is known as the electric, or dielectric, susceptibility. This rela­
tionship can obviously be regarded as the equation of sta te  for a 
dielectric in an electric field. I t  is common practice in calculating- 
dielectrics to write the dielectric susceptibility a  as

a  =  (e — 1)/4ji, (9.75)

where e is called the perm iitiv ity  of the dielectric, and, hence, the 
equation of state (9.74), is w ritten thus

P =  1 = ± E .  (9.76)

In calculating the generalized coordinate, magnetization /, of 
magnetic substances, discussed in the previous section, it  is common 
to use mass specific quantities, while in calculating dielectrics the 
practice is to write the generalized coordinate, polarization P, in 
terms of volume specific quantities. In view of this we employ vol­
ume specific values of enthalpy, entropy, and other thermodynamic 
quantities.

9.3.2. If we combine (9.65) with (9.72) w ritten for volume specific 
quantities and (9.76), we obtain

/ 9uy \
V dP ) t ,V =  E (9.77)

Sim ilarly, combining (9.67) w ith (9.73) w ritten for volume specific 
quantities and (9.76), we find that

(9.78)
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In accordance w ith (5.99), the volume heat capacities of a dielectric 
a t  E  and P constant are determined in the obvious way:

and

IIn. ( 9SV )
V dT ) e , p (9.79)

Cp,  p =  T  (
dsc \
dT ) P lp* (9.80)

By the same method as we used for deriving Eqs. (5.109) through 
{5.111), we can easily show th a t

(9.81)

or

o r tha t

(9.82)

(9.83)

From (9.76) it follows tha t we can write the partial derivatives on 
the right-hand sides of Eqs. (9.81) through (9.83) as

( i f . )  = - L f
\ dT ! F.,\p  4n \

<?e \
[dT je,  p ’ (9.84)

dP \ _  J_  i" g  / _de_ 
dE ) t ,\p 4n L I dE ) T , \ p  1 J ’ (9.85)

( \dE \ _  E 
V dT / pt\p e — 1 ( w ) p . p -

|(9.86)

From (9.79), using (2.13) and (9.73), we easily obtain

/ dCE, p \  _ rp / d-P \
I ,dE\ J t 7 p  \ [dT2 ) E ,  p ’

(9.87)

or* which is the same.
( ldCE, p  \  _  TE r  d H  N 
V dE ) f , ' p  4n (.[aT2 J e .Zp *

(9.88)

Sim ilarly,' ^we can show that
/ dCp, P \  ____ rpj d2E \
V dP ) t , P  'I dT2 (9.89)

or
(7dCp,p  ̂ 4nP p 1 f td& \2  / q2r \
[ dP ) T, p  (e — l)2 L e—li \  dT ) p iP [ W ^ j p i p l . g  (9.90)

J
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9 .3 .3 . We know that dielectrics in an electric held are character- 
ized by the following thermodynamic effects.

(1) The piezoelectric effect: the variation of the polarization of a 
dielectric with the external pressure.

(2) The electrostrictive effect: the variation of the volume of a die­
lectric with the electric field strength. In a certain sense this effect 
is the opposite of the piezoelectric effect.

(3) The pyroelectric effect: the change in the polarization of a die­
lectric when its temperature changes.

(4) The electrocaloric effect: the change in the tem perature of a die­
lectric when the electric field strength changes. This effect is the op­
posite of the pyroelectric effect.

The piezoelectric effect is characterized hy the value of the deriv­
ative (d$fdp)E and the electrostrictive effect by the value of the de­
rivative (OVfdE)p. I t is clear tha t each derivative will he different 
for different thermodynamic processes. An exam ination of these 
effects in adiabatic and isothermal conditions is of the most practical 
interest.

Equations relating the values of (d'$/dp)E for adiabatic and iso­
thermal conditions, according to (2.71), can be written as

( d% \ _  / \
\  d p  ) s ,  E \  Op I t , e

+  f — l ( — )‘ \  d T  ) p, E I  d p  I<S, E
(9.91)

In a sim ilar way we can easily obtain an equation relating the va­
lues of (dV/dE)p for adiabatic and isothermal conditions:

(9.92)

It is obvious from general thermodynamic reasoning that there is 
a unique relation between the piezoelectric and electrostrictive 
effects. We can obtain this relation in the following way. For the sys-
tem under consideration relations (3.68)

and (3.69)

( d,r  ) iv
\  dl } t , p

can be written as

( dT " ) V\ dp I t , e
(9.93)

and

(
■w ' * ) _  «
. dE ) T , p ~

(9.94)

where the enthalpy of a dielectric, / /* , is determined by (9.68).
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In accordance w ith (2 .12) and (2.13), it follows from (9.93) and 
(9.94) tha t

is the isobaric-isothermal potential of the system, using (2 .12) and 
(2.13), we obtain

Next, we see th a t the pyroelectric effect is characterized by the 
derivative (dP/dT)Et]J, while the opposite electrocaloric effect by the 
derivative (dT/dE)p. In principle the electrocaloric effect occurs in 
any therm odynam ic process involving a dielectric (not an isothermal 
process obviously); but the adiabatic processes, characterized by 
\dTIdE) S)P, are the most interesting from the practical*standpoint.

From (2.67) we see that

faking into account (9.73) w ritten for the volume specific quanti­
ties and (9.79), we find that

This equation relates the magnitudes of the electrocaloric and py­
roelectric effects.

(9.95)

Sim ilarly, from (3.76)

and (3.77)

which we can write for a given system as

(9.96)

and

(9.97)

where, according to (3.59a),

O* =  U +  p V  — E ^  — TS (9.98)

(9.99)

(9.100)

(9.101)
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9.3.4. An important particular case of a thermodynamic system 
involving a dielectric in an electric field is the electrical capacitor. 
We will not discuss in detail the thermodynamics of an electrical 
•capacitor, but will only give some initial informations.

For a thermodynamic system that includes a capacitor and an elec­
tric field, the voltage across the plates, F, is the generalized force, 

and the electric charge, Z, is the generalized coordinate, W. The 
•combined equation of the first and second laws of thermodynamics 
{1.30) for this system can be written as

T dS =  dU +  p dV — VdZ, (9.102)

while the set of the Maxwell equations is

( # ) , H
dS \
dV J z . v 1 (9.103)

(— ) = -\dS )%$,P
(9.104)

I — ) = -\ dS ) t , V
(9.105)

( —  ) =fV dZ /g g .p  V
dS \
dV ) t , p*

(9.106)

Finally, the equation of state of such a system, namely, the equa­
tion relating the electric charge on a capacitor plate, Z, and the volt­
age across the plates, F, has as we know from electrostatics, the 
following form:

Z =  ©F (9.107)

where © is the capacitance of the capacitor.
These are the main aspects of a thermodynamic description of the 

electrical capacitor.

9.4 Systems in a Gravitational Field

9.4.1. The elementary work performed in lifting a body of mass 
G to a height dz in a gravitational field is

dL* -  gGdz% (9.108)
where g is the acceleration of gravity. Hence, for a system in a grav­
itational field the weight gG is the generalized force, £, and the 
height of the center of gravity of the system, z, is the generalized co­
ordinate, W. Therefore, in accordance with (1.30), the combined equa­
tion of thejfirst and second laws of thermodynamics for a system in 
a gravitational field can be written as

T dS — dU -{“ p dV “I- gGdz, (9.109)
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or for mass specific quantities (if the mass G of the system remains 
constant)

T ds — du +  p dv -f- gdz. (9.110)

9.4.2. Interestingly, for a system in a g ravitational field, as we can 
see from (9.109), the weight gG of the body in contrast to other known 
generalized forces is an extensive rather than intensive quantity . 
The generalized coordinate, height z, however, is not extensive but 
intensive. In this connection we note th a t Eq. (9.109) can be trans­
formed to a form more “common” from the point of view of the inten­
sity  and capacity factors. To this end we use the Legendre transform a­
tion

Gdz =  d (Gz) — zdG, (9.111)

and from (9.109) find that
T dS =  d ( U  +  gGz) +  p dV  — gzdG. (9.112)

The sum U +  gGz in this equation can be in terpreted as the “to­
ta l” energy of the system:

U* =  U +  gGz, (9.113)

byj analogy w ith the total enthalpy of such a system defined in the 
general case by Eq. (1.15). The enthalpy H*  of the entire system is

H* =  U +  p V  - f  gGz. (9.114)

If we combine the Legendre transform ation (3.4) w ith (9.114)r 
from (9.112) we obtain

T dS =  dH* — V dp — gzdG. (9.115)

These are the basic relations for therm odynam ic systems in a 
g rav ita tional field.

9.5 Elastically Deformed Systems

9.5.1. We consider a solid (a rod) which is elastically deformed un­
der a tensile (or compressive) force T’. H ereT 1 is the generalized force, 
£, and the length of the rod, I, is the generalized coordinate, W. 
Hence, the combined equation of the first and second laws of thermo­
dynamics (Eq. (1.30)) for such a system is w ritten as

T dS =  dU  +  p dV  — ¥  dl. (9.116)

Since under tension the ro d ’s volume usually changes very slightly  
(as we will see later), for most cases of practical importance we may 
assume to a good approxim ation th a t V is constant and write (9.116) 
as

T dS =  dU — W dl. (9.117)
15-0 4 2 7
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In accordance w ith (4.17c), (4.20b), (4.23c), and (4.26b), for an 
elastically deformed rod the Maxwell equations (with either p  or 
V kept constant) are as follows:

dl '
OT t) , V = (

' OS \
. 3’F / / , v ’ (9.118)

dl '
, dS ,) 'lr,p' \ d'Y )s ,p  5 (9.119)

( dl 
\ dS ) T, V - 1 — )I dxY ) i, v ’ (9.120)

- dl 
,~df ) V, p ~ ( °S )\ dlY 1 t , p ‘ (9.121)

It is evident th a t the m agnitude of the tensile (or compressive) force 
on the rod can be expressed as

¥  =  tjjQ, (9.122)

where Q. is the cross-sectional area of the rod, and ij? is the tensile 
force per unit cross-sectional area, or stress. In practice the change 
in the size of the solid under stress is expressed in terms of the rela­
tive change in length, or stra in , e, as

e =  (I — l 0) /l0, (9.123)

where l0 is the length of the rod in the absence of a load, and I is 
the length of the rod under a load. From (9.123) we see tha t

dl =  l 0 de +  (l +  e)dZ0 (9.124)

(l0 changes w ith tem perature).
Taking into account (9.122) and (9.124), we can write (9.117) as

T d S  =  dU — ̂ V0 (de +  ( l - f e ) - ^ )  , (9.125)

where V 0 =  QZ0 is the volume of the rod prior to deform ation. This 
can be transformed to

T dsD =  duv — (de +  (1 +  e)d In l0), (9.126)

where s 0 and u v are the volume specific entropy and internal energy 
at a fixed tem perature.

The equation of sta te  for an elastically  deformed rod widely used 
in the theory of elasticity  is the well-known Hooke's law, which is 
usually w ritten as

where E  is the modulus of e lastic ity  (Young’s modulus).

(9.127)
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9 .5 .2 . If we take into account the Maxwell equation (9.120), we 
can write (9.117) as

( f  <9-128>
Combining th is w ith (9.122), (9.123), and, (9.127), we obtain

( f ) r . v = Q[ ( £ - r f ) E + f l a '']> <9J29>
where

=  (9.130)

is the linear therm al expansion coefficient of the m aterial of the rod.
In a sim ilar way we can obtain a relation for the dependence of 

the enthalpy H* of the deformed rod on the force 'F. In accordance 
w ith Eq. (1.15), the enthalpy of the system under consideration can 
be w ritten as

H* =  H  +  p V  -  T  {I -  l0). (9.131)

We m ust note tha t for W  in (1.15) we take not the length of the rod I, 
but the difference I — Z0, which is the change in the ro d ’s length 
under the force T-; the physical meaning of th is rem ark is obvious.

9.5.3. The process of rod deformation is accompanied by changes 
in the tem perature of the rod, i.e. the elastocaloric effect. Of the most 
interest from the practical standpoint is the evaluation of the elas­
tocaloric effect when the rod is deformed adiabatically  (the adiabat­
ic elastocaloric effect is sometimes called the Joule effect). I t  is evi­
dent th a t the adiabatic elastocaloric effect is characterized by the de­
rivative (dT /dT) s p .

To calculate (d77dT)S p , we use the Maxwell equation (9.119)

1— ) .\ dS 1 'V, p (9.132)

In accordance with (2.6) we can write

(JL) = (JL)
\ e s  l v , r  \ dT 1

(J L )
1v,p  \ dS h v . p ’ (9.133)

We see further that
/ dT \ T (9.134)\ dS ) v , p e\p,p G *

where

‘♦ ,P =  r (
ds \

dT / ‘jjj, p (9.135)

1 5 *
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is the specific heat capacity of the m aterial a t constant stress (this 
value practically coincides w ith the constant-pressure heat capacity 
cp)y and G is the mass of the rod.

If we combine (9.130), (9.133), and (9.134) w ith (9.132), we obtain
rJ-h T 
cpG (9.136)

This relation enables us to calculate the change in tem perature due 
to the elastocaloric effect.

9.5.4. We can account for the change in the volume of an elastic 
rod as follows. We can show tha t at constant tem perature the 
change in the volume of the rod w ith its length is determined by

—  =  ( l - 2 n )  de, (9.137)vo
where p, is known as the Poisson ratio and is defined by the ratio  
Bi/s, where e is the relative longitudinal deformation (see (9.123)), 
and ex is the relative transverse deformation of the rod.

If we use (9.137), we can write (9.116) as
T dS =  dU +  V 0 [(1 — 2p) p -  t|3J de, (9.138)

or in volume specific quantities
T dsv =  du0 +  [(1 — 2p,) p — op] dz. (9.139)

Unlike (9.117) and (9.126), these relations account for the change in 
the volume of an elastic rod at constant tem perature. The reader 
can easily find the relations for a varying tem perature.

9.5.5. Aside from problems concerning longitudinal deformation 
of an elastic rod, it is interesting in some cases to consider an elas­
tic rod subjected to a certain torque 931. For such a thermodynamic 
system the torque 931 is the generalized force, £, and the angle co 
through which the rod is twisted by the torque 911 in the generalized 
coordinate W. The combined equation of the first and second laws 
of thermodynamics (1.30) is then w ritten as

T dS =  dU -j- p dV -  (9.140)

A detailed thermodynamic analysis of torsion in a rod can be done 
in a way sim ilar to that for a stretched (or compressed) rod; in the 
corresponding differential equations we must replace T  by 931 and I 
by to.

9.6 Voltaic Systems

9.6.1. We know th a t for a reversible voltaic cell the electromotive 
force, g, is the generalized force and the electric charge, Z, is the 
generalized coordinate. Hence, the combined equation of the first
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and second laws of therm odynam ics (1.30) is w ritten as

T dS =  dU +  p dV -  %dZ. (9.141)

If the volume of the system is kept constant (and only th is case is 
analysed when studying the therm odynam ics of a voltaic cell), this 
relation assumes the form

T dS =  dU — %dZ. (9.142)

The Maxwell equations (4.17c), (4.20c), (4.23b), and (4.26b) as 
applied to a reversible voltaic cell can be w ritten in the following 
form:

I dZ 
[ dT ) , v = ( >N

%
 l*> 

^
 1 (9.143)

dS \ 
dZ j £ . p _

( * L )
I dT J s , p ’

(9.144)

dS \ 
OZ I 7, V \ 0T )z ,  v  ’ (9.145)

1 dZ 
[~dT ) s , v = (

OS \
<5fe ! T, p ‘

(9.146)

We also know th a t the emf, g , of a reversible cell is a function of 
tem perature and does not depend on the extent to wTrich the cell is 
charged. Therefore, (1) Eq. (9.146) is meaningless since if T  is con­
stan t so is (and vice versa), and (2) Eqs. (9.144) and (9.145) are 
identical and can be w ritten as

( - £ ) r . » v = - £ -  <9 1 «>

Thus, for a reversible voltaic cell the system of Maxwell equations 
consists of two equations only, namely Eqs. (9.143) and (9.147).

9.6.2. Next, let us cxaminejhow the in ternal energy U of a voltaic 
cell changes w ith charge Z  a t constant tem perature. (We assume th a t 
the pressure in the system rem ains unchanged, p  = ' const, and the 
change in the volume of the system is negligible, V =  const.) Equa­
tion (9.142) then yields

If we combine this w ith (9.147), we obtain
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After integration we arrive a t a relation that enables us to deter­
mine how much the in ternal energy of a reversible cell changes as 
the charge changes by AZ =  Z 2 — Z l At T =  const:

z s
U2 ( T , Z 2) - U , ( T , Z , ) = \  ( % ~ T § r ) d Z .  (9.150)

Zi

Since % depends solely on the tem perature, from (9.150) it follows 
that

Uz (T, Z2) -  U t (J \  Z,) =  (g  -  T ■§■) (Z2 -  Z,). (9.151)

Furthermore, since in the system under consideration p  and V 
are constant, from the definition of “ordinary” enthalpy (1.14)

H  =  U +  pV

it is evident tha t here
U 2 -  U x =  H 2 -  H l (9.152)

and Eq. (9.151) can be expressed as

H 2(T, p% p, Z,) =  [ % - T  § - )  AZ. (9.153)

In this equation the difference between the enthalpies of the system 
in the final and in itia l states in a process taking place under isobar- 
ic~isothermal conditions is, according to (5.80), sim ply the heat of 
the isobaric-isothermal reaction:

Q p  =  H 2 -  H v

W ith this in mind, we can write Eq. (9.153) as follows:

Qp =  [ % - T  AZ. (9.154)

This im portant equation connects the heat of reaction, Qp, in a 
voltaic cell and the cell’s emf, %. I t  is known as the Helmholtz 
equation.

If we compare this equation with the Gibbs-Helmholtz equa­
tion (5.82)

_ ? p = z,j.T- r ( i § i ) p,
we see th a t the Helmholtz equation for a voltaic cell (9.154) is a par­
ticu lar case of (5.82).
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9.7 Two-Dimensional Surface Systems

9.7.1. We know that the interface between two phases has spe­
cial features: there is surface tension and the surface layer as a whole 
has excess internal energy (called surface energy). This surface layer 
is very th in  (of the order of several monomolecular layers) and since 
its volume is negligible if compared w ith the whole bulk of the liq­
uid, we are justified in assuming that the surface layer has zero thick­
ness (and, hence, zero volume) and tha t the special features of this 
layer (excess energy, for one) m anifest themselves only at the surface 
of the liquid. We will then speak of surface energy, surface heat ca­
pacity, surface entropy, etc.

9.7.2. Let us study a thermodynamic system th a t is an interfacial 
surface w ith no thickness. For such a system the surface area, @, is 
the generalized coordinate, W, and the surface tension taken with the 
minus sign,-cr, is the generalized force, H. The surface tension a is 
a unique function of tem perature. The functional relationship 
o (T) for a given substance is the equation of state for the system under 
consideration.

The combined equation of the first and second laws of thermodynam­
ics (1.30) for this two-dimensional system (V =  0 ) can be written as

T d S  =  d(J — o d (9.155)

For the given system we can write the Maxwell equations (4.17c), 
(4.20b), (4.23c), and (4.26b) as

( w ) M

OS \
~ 3 o "  J 3  ’

(9.156)

: # ) „ = - (  —  )I f l o  / s ’ (9.157)

# ) , = - ( £ ) a .
(9.158)

( f f ) H
OS \
0O I t ’

(9.159)

Bearing in mind tha t a  is a unique function of tem perature, we see 
that, first, Eqs. (9.157) and (9.158) are identical and can be w ritten
as

/ OS \ ___/ dS \ _  do
I  3 2  1 t ~  \  0 2  ) o ~  ~~ ~ d T ’

(9.160)

Second, it is obvious th a t Eqs. (9.156) and (9.159) are meaningless. 
Indeed, since T is constant, so is ct, and the derivatives in (9.159) 
are zero. We easily see tha t the situation is the same with the de­
rivatives in (9.156). From (2.71) it follows that

(  O S  \ /  O S  \ , / OS \ d o
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Since (d 3 ld T )a =  0 and, of course, {d3/do)T =  0, it is obvious 
that the derivative (6 3 /d T ) s also equals zero.

9.7.3. The entropy, internal energy, and other caloric quantities 
for a surface can be w ritten as

s  =  S0©, (9.162)
u  - u a3 , (9.163)

etc., where sa and u a are the area specific values of S  and U (since 
mass and volume are meaningless concepts for a two-dimensional 
system, the specific quantities can only be referred to a unit area).

Next, differentiating (9.162) and (9.163) w ith respect to 3  w ith 
T kept constant, we obtain

(9.164)

(Hb=“»+®(ia- (9.165)

Since both sa and u 0 depend only on tem perature, they character­
ize the properties of coexisting phases (just as a does). Hence, we can 
write (9.164) and (9.165) as

(9.166)

“Hfb- (9.167)

The entropy sa can easily be determined via Eq. 
(9.160) and (9.166) we see th a t

(9.160): from

do
Sa =  ~~ I T  • (9.168)

In this case the equation for the to ta l entropy of the surface, (9.162), 
is

S — — —  3°  dT (9.169)

Let us now turn to u a. From (9.155) it follows th a t

(9.170)

If we combine this with (9.160) and (9.167), we obtain
rn  dO

u° =  ° - t 7 t - (9.171)

The equation for the to ta l in ternal energy of a surface, (9.163), then
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(9-172)

9.7.4. The area specific heat capacity of a surface layer, C(J, is 
determ ined, according to (5.99), by the obvious relation

f0= r ( i ^ ) s . (9-173)

Using (9.169), we can write (9.173) as

ca ~  ~ T - r̂j-. (9-174)
9.7.5. From relation (3.9)

F =  U — TS
and relation (3.59)

=  U +  P V +  I W  -  T S , 

which for the given system can be w ritten as

O* =  u  -  a©  -  TS,  (9.175)

with due regard for (9.169) and (9.172), i t  follows, respectively, that
F  =  a© (9.176)

and
O* =  0. (9.177)

Hence, we see tha t the area specific values of F and are, respec­
tively,

/« =  o (9.178)
and

cp* =  0. (9.179)

We are not surprised at (9.179) since the mass of the surface layer is 
zero.

9.7.6. If we now7 turn to an ordinary three-dim ensional system com­
posed of a pure substance, the combined equation of the first and sec­
ond laws of thermodynamics for such a system (1.30), in wrhicli sur­
face effects are taken into account, is w ritten as

T dS  =  dU - f  p dV ~[o[d<£.

As to the therm odynam ic properties of such a system, the relations 
for U, I f , F, O , S , and the heat capacities of the system are deter­
mined by the obvious relations reflecting the add itiv ity  of these
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quantities:

= u G + ( o - t £ ) < 3 , (9.180)

=  l l C + ( a - T ^ ) s , (9.181)

F =  fG +  a@f (9.182)

e-IIe

(9.183)

S  = r t ~ £ e . (9.184)

C r = c p G - T ^ e , (9.185)

/i /I rnCv — cvG T dTi (9.186)

where G is the mass of the substance in the system. Obviously, when 
the ratio of the surface area of a liquid to its volume is sm all, the 
contribution of the surface of the liquid to the thermodynamic 
functions of the liquid is negligible.

9.8 Radiation in a Cavity as a Thermodynamic System

9.8.1. Equilibrium  electromagnetic radiation in a closed cavity 
(photon gas) is a simple system performing only work of expansion. 
The only difference between the thermodynamic description of this 
system and tha t of usual simple systems is the specific character of 
the equation of state. In this connection we will briefly discuss the 
differential equations of the thermodynamics of such systems.

9.8.2. Electrodynamics uses the notion of radiation density uvi 
which is defined as the amount of radiation energy per unit volume

uv =  UIV , (9.187)

where U is the total radiation energy in the given cavity, and V 
is the cavity volume. We know from electrodynamics th a t uv is a 
function of the tem perature alone and is independent of volume. 
Hence, from 19.187) w ritten as

U =

it  is clear that

( f r ) T= “-  <9J88>
Combining this with (5.2), we find that

(9.189)
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I t is known from electrodynamics th a t electrom agnetic radiation 
exerts pressure on a surface, which either reflects or absorbs the ra­
diation. The radiation pressure and radiation density are uniquely 
related in the following manner:

p =  u j  3. (9.190)

Taking this into account, we can transform (9.189) to
T dUp Up

u° =  T ~ d f  r (9.191)

(since uv depends on the tem perature alone, the derivative of uv with 
respect to T is total).

Solving this differential equation, we obtain
uv =  a T \  (9.192)

where a is a constant. This equation relates the radiation density 
to the tem perature and is known as the Stefan-Boltzmann law.

Substituting (9.192) into (9.187), we obtain the relation for the 
total radiation energy in a volume V :

U =  aT*V. (9.193)

Combining (9.190) w ith (9.192), we arrive at the following rela­
tion between radiation pressure and temperature:

p = (9.194)
This equation can be considered as the equation of state for a photon 
gas. We see that in a photon gas an isobar is an isotherm.

9.8.3. The Maxwell equations for the system under consideration 
are w ritten in their usual form, relations (4.1b) through (4.4b). 

For one, from (4.3b)

with due regard for (9.194), we see that

(9.195)

whence it  is obvious that

S (F , T) =  ^ a T 3V (9.196)

is the entropy of a photon gas in volume V; obviously, a t V =  0 
(i.e. when there is no system th a t contains the photon gas) the en­
tropy equals zero.
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From (9.196) we see tha t the volume specific entropy of the rad ia- 
tion is

sv (T) =  -̂ - aT3, (9.197)

which obviously depends only on tem perature.
9.8.4. The isobaric-isothermal potential, defined by the general 

formula (3.13)
O =  U +  p V  -  T S ,

proves to be zero for a photon gas: taking into account (9.193), 
(9.194), and (9.196), from (3.13) we obtain

0  =  0. (9.198)

This also implies that the chemical potential of a photon gas is zero.
9.8.5. The volume specific (constant-volume) heat capacity of a 

photon gas, Cv, is defined by the conventional relation

C- - T ( i H <  f9 1 9 ^
which when combined with (9.197) yields

Cv =  4 a T 3. (9.200}

As to the constant-pressure heat capacity of a photon gas, since, 
as we noted before, an isobar is also an isotherm for radiation and 
the heat capacity of an isothermal process is infinite, we find th a t 
for a photon gas Cp =  oo.



Notation Index

Latin Symbols

a Thermodynamic sound velocity
Cz Heat capacity at s =: const
cz Specific heat capacity at z =  const 
E Electric field strength
E Young's modulus (Sec. 9.5)

% Electromotive force
F Isochoric-isothermal potential
F Massieu function
f Specific isochoric-isothermal potential
/  Specific Massieu function
G Mass
g Acceleration of free fall
H Enthalpy
H  Magnetic field strength (Secs. 7.2, 9.2)
H Characteristic function of the variables U, V, and G/T 
h Specific enthalpy
/  Characteristic function of variables U and plT
i Specific value of the characteristic function /
j  Specific magnetization
k  Adiabatic exponent
L Work
L* Any type of work other than expansion work 
I Specific work L
I Length of a deformed rod (Sec. 9.5)
I* Specific work L*
M Mach number
P Electric dipole moment per unit volume of the dielectric (Sec. 9.3) 
Q Amount of heat
Qp Heat of isobaric-isothermal reaction
Q0 Heat of isochoric-isothermal reaction
q  Specific amount of heat
q  Heat of phase transition of superconductor from the supercon­

ducting state to the normal (Secs. 7.2, 9.2)
R  Gas constant
r Heat of phase transition
S Entropy
s Specific entropy
T Thermodynamic temperature
U Internal energy
U Characteristic function of the variables U, p/T,  and <pIT 
u Specific internal energy
V Volume
v Specific volume
W A generalized coordinate with the exception of volume
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w Specific value of the generalized coordinate W
w Flow velocity (Sec. 5.7)
x Degree of dryness of the two-phase system
Y  Generalized coordinate
y Specific value of the generalized coordinate Y
Z Charge of a reversible voltaic cell (Sec. 9.6) 
z Height

German Symbols
G Capacitance of a capacitor
SW Torque
$  Polarization of a dielectric
S Surface area

28 Voltage across the plates of an electric capacitor

Greek Symbols
Bulk thermal expansion coefficient 
Dielectric susceptibility (Sec. 9.3)
Linear thermal expansion coefficient 
Coefficient of isothermal compressibility 
Coefficient of adiabatic compressibility 
Grand potential

a  
a
V
Psr
r Cramers function
e Permittivity of a dielectric ^Sec. 9.3)
e Strain (Sec. 9.5)
£ Generalized force
A Characteristic function of the variables S, p , and (p 
k Integrating factor
p Joule-Thomson coefficient
u Poisson ratio (Sec. 9.5)
E; Any generalized force with the exception of pressure
2 Characteristic function of the variables S, V and q>
p Density
2 Area of the channel’s cross-section
a Surface tension
(P Isobaric-isothermal potential
cb Planck function
(f> Chemical potential
9 Specific Planck function
X Specific magnetic susceptibility
V Tensile (compressive) force
rf1 Stress
Q Cross-sectional area of the deformed rod
(a Twist angle

Subscripts
a Denotes values on the saturation line

Superscripts
* Denotes quantities referring to complex thermodynamio systems 

one-phase Denotes quantities for one-phase region 
two-phase Denotes quantities for two-phase region 
(1) and (2) Denote quantities for two coexisting phases 

' Denotes the liquid phase
Denotes the vapor phase



Subject Index

adiabatic exponent 126, 127 
adiabatic inaccessibility 

principle of 25

boundary curves 136

capacity factor 11 
Caratheodory, C. 24 
Clausius equation 182 
Clausius-Clapevron equation 151, 152 
coefficient

adiabatic compressibility 125 
adiabatic expansion 125 
bulk thermal expansion 117 
isothermal compressibility 124 
Joule-Thomson 31, 125, 180 

contact transformation 28 
coordinate 

generalized 11 
curve

boundarv 136 
left 149 
right 149 

saturation 149 
transition 149

degree of dryness 150

effect
elastocaloric 227 
electrocaloric 222 
electrostrictive 222 
magnetocaloric 213 
magnetoelastic 213 
magnetostrictive 213 
piezoelectric 222 
pyroelectric 222 

Ehrenfest equation 192 
energy

internal 101 
enthalpy 13 

specific 13
partial derivatives of 102 

entropy 14 
specific 14 

equation
continuity 129 
Clausius 182
Clausius-Clapeyron 151, 152 
discontinuity 140 
Ehrenfest 192
first law of thermodynamics 12 
Gibbs 56

equation
Gibbs-Duhem 57 
Gibbs-IIclmholtz 111 
Helmholtz 230 
Laplace 126, 127 
Maxwell 88 
phase transition 154 
Planck 183 
Planck-Gihbs 201 
Poisson adiabatic 127 
Poynting 155 
Rutger 196, 218
second law- of thermodynamics 12 
of state 9 

equilibrium criterion 35 
Euler condition 21 
exponent

adiabatic 126, 171 
Bernoulli 131 
isentropic 126 

extensive quantities 9

factor
integrating 23 
intensity 11 

force
external 9 
generalized 11 

form 
Pfaffian 19 

formula 
Mayer’s 116 

function
characteristic 39 
composite 17 
discontinuity of 29 
Kramers 73 
Massieu 59 
Massieu-Planck 57 
Planck 60 
process 10, 20 
state 10, 20

generalized coordinate 11 
generalized force 11 
Griineisen relation 117

heat
of phase transition 152 

heat capacity 
isobaric 31 
isochoric 31
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Helmholtz equation 230 
Hooke’s law 226

ideal-gas state 104 
indeterminate form 206 
integrating factor 23 
intensity factor 11 
intensive quantities 9 
isentrope 105 
isobar 105 
isochore 105 
isolines 156 
isotherm 104

Jacobian 31 
Joule effect 227

Keesom, W.H. 154 
Knoblaugh, A. 120

laws of thermodynamics 
first 12 
second 12 

L’Hospital’s rule 201 
line

constant dryness 177 
saturation 149

Mach number 130 
Mayer’s formula 116

parameter(s) 
state 48
thermodynamic 9 

Pfaffian form 
holonomic 23 
nonholonomic 23 

phase diagrams 10 
phase transition 148 

heat of 152 
first-order 190 
liquid-vapor 197 
second-order 190 

point(s) 
critical 31, 158, 197 
of discontinuity

of the first kind 30 
of the second kind 30 

salient 136

Poisson ratio 228 
potential

chemical 47, 53 
grand 70
iso baric-isothermal 37 
isochoric-isothermal 37 
thermodynamic 39 

process
isobaric 122 
isochoric 121 
isothermal 102 
thermodynamic 10

quantities 
additive 41 
extensive 9 
intensive 9 
specific 45

region 
one-phase 149 
two-phase 149 

relation
Griineisen 117

Shaw, A.N. 33 
state surface 10 

caloric 202 
Stefan-Boltzmann law 235 
system

complex 11 
isolated 35 
simple 11
thermodynamic 10

theorem 
Bemoulli-Euler 18 
on inverse quantities^l7 
Nernst heat 217 

transformation 
contact 28 
.Legendre 28

Vulis, L. 133

Young’s modulus 226










