The
Differential

Equations

of

Thermodynamics

Second Edition, Revised

V. V. Sychev















B. B. ChIUEB

JANOOEPEHIIMAJILHDLIE
YPABHEHU A
TEPMOJ/IMHAMMNRKN

N3OATEJILCTBO «<HAVERKA»
MOCKBA



The Dijferential
Equations of
Thermodynamics

V.V. Sychev

Translated from the Russiagn
by Eugene Yankovsky

ERRATUM

T ar
p. 124, formula (5.162) instead of (TZ-)S read ( I )s

MIR PUBLISHERS MOSCOW



First published 1983
Revised from the 1981 Russian edition

To the Reader

Mir Publishers would be grateful for your com-
ments on the content, translation and design of this
book. We would also be pleased to receive any other
suggestions you may wish to make.

Our address is:

Mir Publishers

2 Pervy Rizhsky Pereulok,
I-110, GSP, Moscow, 129820
USSR

Ha anzauickon ssmxe

© MapartenncrBo «Hayxa», 1981
© English translation, Mir Publishers, 1983

Printed in the Union of Soviet Socialist Republics



Preface
to the Russian Edition

Thermodynamics, as is known, is constructed quite simply. Two of
its main laws have been established experimentally, and by applying
mathematical tools to them we can obtain the range of conclusions.
in which thermodynamics is so rich.

The mathematical tools of thermodynamics are simple but in
certain aspects at the same time quite sophisticated. Neglecting
some of these sophisticated “trifles” often results in crude mistakes,
even in reputable works on thermodynamics.

The restricted size of the usual textbooks on thermodynamics does
not permit discussing more extensively these important questions
concerning the mathematical tools. For this reason it was felt neces-
sary to consider these problems in a special book, which though lim-
ited in size would at the same time go into details.

Naturally, the author does not aim at a presentation of thermo-
dynamics and its physical, chemical, and technical applications.
These have been sufficiently discussed in the existing textbooks and
monographs. The purpose of this book is more modest—to deepen
the reader’s knowledge of the mathematical tools of thermodynamics,
to systematize them, and at the same time to emphasize questions
that are often a source of error in thermodynamic calculations. The
book is therefore designed to meet the needs of students and graduates
majoring in thermal physics, physical engineering, and physico-
technical specialities who already have a background in general
thermodynamics. I hope that the book may also prove useful to
scientists, engineers, and teachers specializing in thermodynamics.

Comments on the contents of this book will be much appreciated.

V.V. Sychev
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1 Recollections
of Thermodynamics:
A Survey Chapter

This book cousiders the mathematical tools of thermodynamics and
its applications. It is not intended to give a detailed analysis of the
general problems of thermodynamics. Therefore, in this chapter we
briefly discuss some concepts of thermodynamics necessary for sub-
sequent presentation.

1.1 Basic Concepts of Thermodynamics

1.1.1. The thermodynamic quantities characterizing a substance
are either intensive or extensive.

Intensive quantities are those whose values do not depend on the
amount of substance in the system (pressure, temperature, and some
others).

IExtensive quantities arc those whose values depend on the amount
of substance in the system. Volume, which varies under given con-
ditions with the amount of substance, can serve as an example of
an extensive quantity.

Specific extensive quantities, i.e. the values per unit amount of
substance, behave like intensive quantities.

Intensive quantities that determine the state of a body or group
of bodies (a thermodynamic system) are called thermodynamic para-
meters of the state of the body (system). The most convenient and,
therefore, the most widespread parameters of state are temperature,
pressure, and specific volume (density) of the body.

When no external forces act on the system, the state of a pure sub-
stance is uniquely determined if two intensive independent para-
meters are given. (When we have a mixture of substances and when
a system is under external forces, e.g. an external electric field or
external magnetic field, the number of parameters necessary to
determine uniquely the state of Lhe system increases. In this book
we will deal only with pure substances.) Any otlier parameter is a
function of two given parameters. Hence, any three parameters of
state (e.g. pressure p, specific volume v, and temperature 7') of a pure
substance are uniquely related to each other. The equation that
connects any three parameters is called the equation of state for a
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given substance. For each substance the relationship between these
parameters is individual and, hence, thermodynamic properties are
described by an equation of state specifically for each substance.

The relationship between the parameters of state can be repre-
sented by the so-called state surface in a system of coordinates (e.g.
p, v, T) along whose axes the values of these parameters are laid off.
The projections of this thermodynamic surface on the coordinate
planes (say p-v, p-T, or v-T planes) are called phase diagrams of the
substance.

1.1.2. By a thermodynamic system we understand a collection of
bodies interacting with each other and the surrounding medium; all
-other bodies beyond the boundaries of the system are called the sur-
tounding medium.

If at least one of the state parameters of the system changes, the
state of the system changes, too, i.e. a thermodynamic process
takes place. This process is a collection of varying states of the
system under consideration.

1.1.3. Thermodynamic quantities can be divided into two catego-
ries: process functions and state functions.

Thermodynamic quantities whose values (with the state of the
system varying in the course of thermodynamic process from initial
state I to terminal state 2) depend on the path of the process 7-2
.are termed process functions. In other words, if v is a process func-
tion, the amount by which this function changes in the process 7-2,
Vv;_s, defined by the obvious relation

vie= | dv, (1.1)

(1-2)

will differ depending on the path along which the line integral (1.1)
is calculated. As is known from thermodynamics, heat and work are
process functions.

Thermodynamic quantities whose values (with the state of the
system varying in the course of a thermodynamic process from initial
state 7 to terminal state 2) do not depend on what path the process 7-2
takes and are defined only by the difference of the values of the given
function in the terminal and initial states, are termed state Functions.
In other words, if p is a state function,

(dp—pz (1.2)

(1-2) i
Internal energy, enthalpy, and entropy are examples of state
functions.
1.1.4. Thermodynamic systems can perform different types of work:
the work of cxpansion against external pressure, the work of in-
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creasing a surface area against surface tension, the work of displacing
a body in a gravitational field, the work of polarizing dielectrics in
an electric field, and so on. We know that although all these types
of work differ greatly there is a common formula for calculating
the work L:

dL = {dY. (1.3)

Here [ is the external force acting on the body (system), and Y is
the state parameter (coordinate) of the system conjugate to the force
C. It is common practice to call { a generalized force and Y a general-
ized coordinate.r

If a system performs work against external pressure p accompanied
by an increase in volume V (the so-called work of expansion), then
(1.3) becomes

dL = p dV. (1.4)

It should be noted that different types of generalized force have
different generalized coordinates conjugate to them. When con-
sidering particular systems we will always establish what state para-
meter of the system is a generalized force and what a generalized
coordinate.

If several types of force act simultaneously on a system, then
evidently the work done by the system is the sum of the amount of
work done by the system under the action of each force:

dL= 2} {;dY (1.5)
i=1

where {; is the ith generalized force, and Y; the generalized coor-
dinate conjugate to this force; n the number of generalized forces.

Thermodynamic systems performing only work of expansion will
be called simple systems, while those performing other work besides
work of expansion complex sysltems.

In what follows we will consider systems performing either only
work of expansion (i.e. simple systems) or performing no more than
two types of work simultaneously, one heing work of expansion. It is
therefore expedient to represent the work L done by the complex
system as a sum of two terms: the work of expansion and any other
possible type of work. Let us denote by L* any type of work other
than expansion work p dV. Then, obviously,

dL = pdV + dL*. (1.6)

! Sometimes in the literature a generalized force is called an intensity factor
and a generalized coordinate a capacity factor. These names indicate that
generalized forces are intensive quantities and generalized coordinates extensive.
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We will also use the notations
dl* = gdW, (1.7)
where E is a generalized force with the exception of pressure, and

W is a generalized coordinate with the exception of volume. In
accordance with these notations Eq. (1.6) can be written thus:

dL. = p dY + EdW. (1.8)

Obviously, for mass specific values (i.c. per unit mass) of the
thermodynamic quantities in Eqgs. (1.3) through (1.8) these equations.
can be written thus:

dl = [ dy, (1.3a)

dl = p dv, (1.4a)

dl = 2 T;dy;, (1.52)
i=1

dl = p dv + dl*, (1.6a)

dl = § dw, (1.7a)

dl = p dv + € dw; (1.8a)

where v is the specific volume, and y and w the mass specific values
of the generalized coordinates Y and W (y = Y/G and w = W/G,
with G the mass of the substance in the system).

1.2 The Equations of the First and Second Laws of
Thermodynamics

1.2.1. We know that the equation of the first law of thermodynam-
ics, the law of conservation and conversion of energy, can be written
in the following form:

dQ = dU -+ dL, (1.9)

where Q is the amount of heat supplied Lo or rejected from a thermo-
dynamic system, U the internal energy of the system, and L the
work done by the system (or done on the system).

We noted above that neither Q nor L is a state function; both
depend on the process by which the system goes from state 7 to
state 2. So dQ and dL, are, obviously, not total differentials.

For simple systems Eq. (1.9) combined with (1.4) is written

dQ = dU + p av, (1.10)
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while for complex systems, using (1.5), (1.6), and (1.8), respectively,

dQ=dU+ 2 ¢;dY (1.11)
i=1
dQ = dU + p dV + dL*, (1.12)
and
dQ = dU + p dY + E dW. (1.13)

In the same way, for mass specific values of thermodynamic
quantities these relationships are written thus:

dg = du + p dv, (1.10a)

dg=du-+ D) ¢; dy; (1.11a)
i=1

dg = du + p dv 4 dl*, (1.12a)

dg = du + p dv + § dw. (1.13a)

1.2.2. Enthalpy is one of the most important thermodynamic
quantities. For simple systems enthalpy H is determined by the
following relation:

H=U+ pV, (1.14)
while for complex systems by the relation
H* = U + pV 4+ EW. (1.15)
In the same way specific enthalpy for simple systems is
h = u -+ pv, (1.14a)

and for complex systems
h* = u + pv + Ew. (1.15a)

1.2.3. The equation of the first law of thermodynamics for a sta-
tionary flow of a liquid or gas in a channel can be written in terms of
(mass) specific quantities as

dg=dh + wdw + gdz + dligen + dlajss, (1.16)

wlere ¢ is the heat supplied to the flow (or rejected from it), 2 the
enthalpy of the fluid, w the flow velocity, z the height, liec, the
so-called technical work done by the flow, l4,s the dissipative work
(e.g. the work done by the flow in overcoming frictional forces), and
g the acceleration of gravity.

The heat ¢ in Eq. (1.16) consists of two parts: the heat g4 brought
into the flow from outside (or rejected from it to the surroundings)
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and the dissipative heat g4, liberated, for instance, when the
flow involves friction:

qd = {ext + dlsse (117)

Since ¢q4i¢s 1S cquivalent to lge, we can write Eq. (1.16) in the
following form:

dg.yy = dh -+ wdw + gdz + dliecn; (1.18)

the equation is valid both with and without friction in the flow.
1.2.4. An analytic expression for the second law of thermodynamics
has the form

T dS > do, (1.19)

with S the entropy of the system. In terms of specific quantities this
relation is

T ds > dg. (1.19a)

Here the “greater than” sign is used when the system undergoes an
irreversible process, and the equality holds when the process is
reversible.

Hence, for reversible processes

dQ = T dS (1.20)
and, respectively,
dg = T ds. (1.20a)

1.2.5. From Eqs. (1.9) and (1.19) we can see that a combined
equation for the first and second laws of thermodynamics can be
written as

T dS > dU + dL. (1.21)

For a simple system this relation together with (1.4) is transformed
thus:

TdS >dU + pdV, (1.22)
whereas for a complex system Eq. (1.21) combined with (1.5) yields

n
TdS>dU+ D) ¢, dY,, (1.23)
i=1

or, which is the same, combining (1.21) with (1.6), we obtain
TdS >dU + pdV + dL*; (1.24)

for a complex system performing one more type of work besides work
of expansion we can employ (1.7) and write

TdS >dU + pdV 4 EdW. (1.25)



1. Recollections of Thermodynamies 15

In accordance with the above, when a system undergoes reversible
processes, relations (1.21) through (1.25) have the form:
for all systems

T dS = dU +- dL, (1.26)
for a simple system
TdS =dU + pdV, (1.27)

and for a complex system

n

TdS=dU+ 2, ¢;dY,, . (1.28)
i=1

T dS = dU + p dV + dL*, (1.29)

TdS = dU + p dV + & dw. (1.30)

Obviously. for mass specific values of thermodynamic quantities
Eqgs. (1.21) through (1.25) are respectively written in the following
form:

T ds > du + dl, (1.21a)

T ds >du -+ pdv, (1.22a)

Tds>du+ 2 L, dy;, (1.23a)
i=1

T ds > du + p dv + di*, (1.24a)

T'ds>du -+ pdv + & dw, (1.25a)

and Eqgs. (1.26) through (1.30) in the following form:

T'ds = du + dl, (1.26a)

T'ds = du + p dv, (1.27a)

Tds=du-t+ Q) ¢;dy;, (1.28a)
i=1

T ds = du + p dv +/dl*. (1.29a)

T'ds=du—+ pdv+ E dw. (1.30a)

1.2.6. These are the basic thermodynamic relationships that we
will need in what follows.



2 The Mathematical Tools
of Thermodynamics

2.1 Derivatives of Functions of Several Variables

2.1.1. Thermodynamics deals mainly with functions of several
variables. The following notation is assumed in thermodynamics:
a partial derivative of a function z (z;, . . ., z,) with respect to the
variable z; is denoted by (8z/dz;) x+x, here the subscript indicates

that the derivative is taken assuming that the quantity in the sub-
script is constant. For instance, the derivative of pressure with
respect to temperature, dp/dT, showing how the pressure varies with
temperature, may be calculated in various conditions: at constant
volume V, at constant entropy S. at constant enthalpy H, and so on.
In each case the derivative is denoted by (dp/dT)+, (0p/dT)g, or
(0p/3T) iy and differs in value.

The well-known relationships for the derivatives of functions of
several variables are widely used when considering differential
equations of thermodynamics. These relationships are given below
in Secs. 2.1.2 through 2.1.5.

As a rule, we will consider thermodynamic quantities that are
functions of two variables.! It may happen that one of the variables
is a unique function of another variable.

If a variable y is uniquely related to z and, therefore, y = y (),
the function z (z, y) is, in the final analysis, a function of one vari-
able; consequently, dz/dz is a total derivative, dz/dz. For instance,
the specific volume of a pure substance v is in general a function of
two thermodynamic parameters (e.g. pressure p and temperature T).
However, the specific volume of a substance, vy, on a boundary curve
separating a one-phase region from a two-phase region is a function
of only one variable, since, as we know, the pressure in a saturated
state is uniquely related to temperature. Hence, in connection with
the specific volume on the boundary curve we can say that the deriv-
ative of v with respect to T along this curve is a total rather than a
partial derivative, dv,/dT. Therefore, below (Chaps. G through 9)
we will deal with both partial and total derivatives of thermody-
namic quantities.

1 Cases where a thermodynamic quantity is a function of more than two
variables will be stipulated.



2. The Mathematical Tools of Thermodynamies 17

2.1.2. We will often use the well-known relations for partial deriva-

tives
(5).=1/(5). .1

and for total derivatives

dy dz
Z=t1|Z (2.2)
(these relations are also known as the theorem on inverse quantities)
For instance,
op\ __ oT
(F).=1/ (5 ). (2.3)
and on the saturation line
ap ar
EF=1 d—p. (2.4)
2.1.3. We will examine differentiation of a composite function.
If y =y (u), and, in its turn, v = v (z,, . . ., z,) and, hence, y =
=y (zy, ..., xy), then, as we know, the following relationship
(the so-called chain rule) holds:
dy (9 ou
(a)x;&xi_ ( du )xq&xi ( oz; )xq&xi' (25)
For the case of two variables, where y = y (xz, z) and u = v (z, 2).
this relationship is
oy \ (99 (9~
(—67)2_( du )z( oz )z' (2.6)
For instance, the chain rule enables us to write
op \ __ (0P Os \ :
(57 )= (% ). (57 ). (2.7)

obviously, here p = p (T, v) and s = s (T, v).
In a similar manner, if we take a function of one variable, y =
= y (u), and u = u (), then

dy _ dy du 3
dr  du dz ° (2.8)

For example, along the boundary curve

dp _ dp dv .
9T =@ ar (2.9)

2—0427
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Using (2.1) and (2.2), we can write (2.6) and (2.8), respectively, in
the following form:

(32). (&), (5).=1 (2.10)
and
Z_Z%%Z (2.11)

2.1.4. When deriving important equations of thermodynamics, we
make use of the Bernoulli-Euler theorem on the equality of mixed
second-order derivatives, which states that if the mixed second-order
derivatives of a function z (z, y) are continuous at point P (z, y),
then they are equal at this point. In other words, for the function
2z (z, y) the value of its mixed second-order derivative does not depend
on the order of differentiation:

0%z 9%z
drdy oy éz’ (2.12)

or, which is the same,

[ (&) )=l= () .13

2.1.5. The relation between second derivatives d?y/dz* and d*z/dy?
is often used in thermodynamic equations. We see from (2.2) that

d%y _4d (dz\-i. (2.14)

dz2  dzr Ty—/

The right-hand side of the relation combined with (2.8) may be
transformed to the following form:

d (dz\-1__ d (dz\-1dy
=) =w(s) & (2.15)
whence
d dr \-1 dz dy \3
w5) =~ (&) (2.16)
and, consequently,
dly __ d*z ( dy \3
dzz ~ ~ dy? (E) : (2.17)

In the same manner we can show that

(S%).=—(Z5). (&) (2.18)

9.1.6. These are some mathematical relations generally used in
the differential equations of thermodynamics.
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2.2 Pfaffian Forms and Total Diflerentials

2.2.1. Difterential relationships used in thermodynamics, such
as those considered in Chap. 1 (the equation of the first law of thermo-
dynamics, the combined equation for the first and second laws of
thermodynamics, the relations for the work of a thermodynamic
system, and the expressions for differentials of various thermodynam-
ic functions), are similar in structure and have the form

dZ = A, (zy, - - ., Zp)dz, + ...+ Ay (7, - - .y Z) dzy, (2.19)

where z,, ..., z, are variables. The expression on the right-hand
side,

®

\__) Ai (1:1, PR xn) dxi, (2.20)

i=1

is called a Pfaffian differential expression or a Pfaffian form.

Obviously, the equation of the first law of thermodynamics for
simple systems, (1.10), is a Pfaffian form in two variables; for sys-
tems performing one more type of work besides work of expansion,
(1.13) is the Pfaffian form in three variables; finally, for systems
performing n types of work, (1.11) is a Pfaffian form in (n + 1)
variables.

We know that the total differential of a function of several (inde-
pendent) variables, z = z (z,, . . ., Z,), is defined as

n

dz= S (j—;)x#i dz,. (2.21)

i=1
This is, obviously, a particular case of Eq. (2.19); here

0z

A (Zgy o vor T) = (aT (2.22)

)x:/:xi'
In the majority of cases we will consider functions of two variables
and, therefore, deal with differential relations of the form
dZ = M (z, y)dz + N (z, y) dy (2.23)
and total differentials of the form

dz = (%)yd:c +( gy ). dy. (2.24)

2.2.2. The most important question concerning thermodynamic
relations of the type (2.19) or (2.23) is whether the Pfaffian form in
the right-hand side of these relations is a total differential of Z.
The point is that if dZ is a total differential, the variation of Z
when we move from point I (z,, y,) on the state surface to point
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2 (x4, y,) is given simply by the difference between the values of Z
at these points:

dZ =7,—7Z,. (2.25)

—t ey DD

If dZ is not a total differential, the variation of Z when we move
from point 7 (z,, y,) to point 2 (z,, y,),

AZ s — 5 dz, (2.26)
(1-2)

is different depending on the path.

As we noted in Sec. 1.1.3, thermodynamic quantities are divided
into two categories: state functions and process functions. From the
aforesaid it is obvious that a special feature of a state function is
that its differential is total, while for a process function its differen-
tial is not total.

It is very important to find a criterion which will enable us to
determine uniquely whether a given Pfaffian form in an equation of
the type (2.19) or (2.23) is a total differential. Such a criterion was
found by L. Euler.

If the Pfaffian form

M (z, y)ydx 4+ N (z, y) dy (2.27)
is a total differential, then, as noted above (see (2.22)),
M= (‘;—i)y (2.28)
and
N=(Z) . (2.29)

Since, according to the Bernoulli-Euler theorem, for the function
Z (z, y) the value of its mixed second-order derivative does not
depend on the order of differentiation (see Eq. (2.12)),

2z __ 3°Z

vxdy ~ dyozx’

from (2.28) and (2.29) it follows that

(%)x_;( aajz )y‘ (2.30)

This implies that if condition (2.30) is met for a differential relation
of the type (2.32), then dZ is a total differential and, hence, Z is
a state function. But if condition (2.30) is not met, i.e. (dM/dy), =
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- (0N/0zx),, the Pfaffian form on the right-hand side of (2.24) is not
2 total differential and Z is a process function.

The Euler condition (2.30) is an important mathematical tool of
thermodynamics. For instance, it enables showing that the differen-
tial of an amount of heat is not total.

Let us consider the equation of the first law of thermodynamics for
a simple system (1.10):

dQ = dU + pdV.
The, above relationship implies that Q is a function of U and V.

According to the notations of Eq. (2.23), M =1, 2 = U, N = p,
and y = V. Hence,

(5).=0 2.31)

" (55),= {57 )y- (2.32

o (57),= () (7 )y .39
i.e.

(%), = (55 )y 2.34

where Cy = (0U/0T), is the total heat capacity of the system.
Since (2.31) differs from (2.34), the differential dQ is not total and Q
is a process function.

In the same manner we can show that the differential of work is
not total. Take the work of expansion, for instance. Since here L
is a function of two variables, pressure p and volume V, for the
differential of this function we may generally write

dL = M dp + N dV. (2.35)
But since by (1.4)
dL = p dV,

according to the notations of (2.23) we can write A/ =1, z = p,
N = p, and y = V; therefore,

(%)fo, (2.36)
(&), =t (2.37)

We see that the quantities (6M/dy), and (dN/dz), are different and
the differential dL is not total. ;
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In the same manner we can show that for a function of three
variables '

dZ = M dz + N dy + P du. (2.38)

and the Euler condition will have tlie following form: since
M=(3=), s (2.39)
N= (%), o (2.40)
P=(%). (2.41)

we find that

(5 )= (T )y (2.42)
( ?92 )x,y=(—Zf—)x,u, (2.43)
(5 )= (5 (2.44)

Conditions (2.42) through (2.44) may be represented in a brief
form

curl R = 0, (2.45)

where R is a vector with components A/, N, and P.

In the general case of n variables the Pfaffian form (2.20) is a total
differential if and only if for all i and & the following conditions are
met:

0A; _ 0Ar . (2.46)

Jdryp ox;

by analogy with (2.45) we can write these conditions in tensor form.

2.2.3. When differential (2.23) is not total, i.e. condition (2.30)
is not met, one would like to transform (2.23) so that it (or a pro-
portional expression) becomes a total differential. From mathemati-
cal analysis we know that there exists a function A (z, y) such that
by multiplying it by the Pfaffian form (2.23) we obtain the total
differential of a function R (z, y). The function A (z, y) is termed
an integrating factor. From this it follows that if A is an integrating
factor for the Pfaffian form

dZ = M dz + N dy,
then .
AM dz-+AN dy=dR, (2.47)
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where
MM = (%)J (2.48)
and
W= (5). (2.49)
Whence ’
()= (%), (2.50)
or
N (-5 ), =M (=) =[(ZF).+ (%), ]~ @
i.e.

V() i () = () (), e

This equation yields the sought quantity A (z, y).
We can also show that any function of type

A, = Af(R) (2.53)

is also an integrating factor. In fact, the number of integrating
factors is infinite (since we may construct an infinitude of functions
of the 2, type).

Thus we have considered two types of Pfaffian forms: (a) Pfaffian
forms that are total differentials, and (b) Pfaffian forms that are
not total differentials but are proportional to such, i.e. have an
integrating factor transforming the Pfaffian form into the total
differential of a function R (z, y).

Moreover, there is a third type of Pfaffian form. These are not
total differentials and have no integrating factor.

It is customary to call Pfaffian forms of the second type (with
integrating factors) holonomic and Pfaffian forms of the third type
(without integrating factors) nonholonomic.

According to Cauchy’s theorem, a Pfaffian form in two variables
is always holonomic, which follows from Eqs. (2.47) through (2.52).

As for Pfaffian forms in three and more variables, some are holo-
nomic while others are not. For one, a Pfaffian form in three variables,

M dz + N dy + P du, (2.54)
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may be holonomic or nonholonomic. As is shown in mathematical
analysis, a Pfaffian form in three variables is holonomic if the fol-
lowing relationship® is valid:

(50~ ) e (), (50).)
+P[ (S "f;y ) = )y ] =0 (2:59)

It should be noted that the problem of holonomic and nonholono-
mic Pfaffian forms in three and more variables is of great interest to
thermodynamics. Although this problem is not directly connected
with the main subject of the book, we think it expedient to consider
it at least briefly.

Starting with the second law of thermodynarmcs in its traditional
form (formulated by R. J. Clausius), we can introduce the concept
of entropy via the relation

4§ = =dQ. (2.57)

Entropy is a state function and, therefore, its differential is total,
unlike dQ. This means that the quantity 1/7 is an integrating factor
for the Pfaffian form dQ.

Taking this fact into account, C. Carathéodory in 1909 suggested
a statement of the second law of thermodynamics alternative to the
traditional (Clausius) statement. Carathéodory confirmed that there
exists an integrating factor for the Pfaffian form dQ (“the Pfaffian
form dQ is holonomic”). He formulated the following criterion for the
existence of an integrating factor for Pfaffian forms in more than
two variables: a Pfaffian form dQ has an integrating factor if and
only if arbitrarily close to a given point (in a space of variables whose
function the Pfaffian form is) there are points that can not be attained
by moving from the given point along the surface dQ = O.

The meaning of this statement is as follows. The differential
equation of the type

2 = (2.58)

2 This relation can be written in vector form
R.curl R = 0, (2.56)

with notations the same as in (2.45).
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is known as the Pfaffian equation. If the Pfaffian form on the left-
hand side of this equation is holonomic, the equation can be trans-
formed into

dR = 0, (2.59)

where

dR(zy, ..., z,)=A(zq, ..., Z,) EA,- dz;. (2.60)

i=1
Since dR is a total differential, (2.59) has solutions
R (zy, ..., z,) = C, (2.61)

where C is a constant (it is obvious that there is an infinitude of such
constants). Here (2.61) is the equation of a surface in n-dimensional
space and, therefore, there is a family of surfaces corresponding to
the solutions of this equation.

From the standpoint of the Pfaffian form dQ, Eq. (2.58) corresponds
to an adiabatic system

dQ = 0. (2.62)

This explains why the surfaces (2.62) given by the solution of the
Pfaffian equation are termed adiabatic surfaces. Carathéodory postu-
lated that these surfaces do not intersect. But if this is the case,
then, obviously, a point (z,, ..., z,) corresponding to a definite
state of the thermodynamic system can belong to only one adiabatic
surface. Consequently, arbitrarily close to the considered state there
are other states (points belonging to other adiabatic surfaces) that
cannot be attained by moving along an adiabatic path from the
given point. This statement (the principle of adiabatic inaccessibility)
constitutes the main point of Carathéodory's formulation of the
second law of thermodynamics: “In the immediate neighbourhood of
each state of a system there are other states which cannot be attained
by an adiabatic path alone.”

The meaning of this statement is clear, since it is easy to show that
the converse is also true: if arbitrarily close to the given state there
are other states inaccessible by an adiabatic path, then, consequently,
the Pfaffian form dQ is holonomic. Thus, if the principle of adiabatic
inaccessibility is true, dQ is holonomic; as Carathéodory showed,
from the fact that dQ is holonomic follows the existence of entropy of
thermodynamic systems.

In considering Carathéodory’s theory we must clearly understand
the following point. We know that the second law of thermodynamics
was formulated on the basis of data accumulated as a result of direct.
observations of macrosystems; this fact is included in the traditional
formulation of the second law of thermodynamics (the Clausius pos-
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tulate, which states that heat cannot transfer by itself from the cold
body to the hot). It might seem that Carathéodory formulated the
second law of thermodynamics purely theoretically without employ-
ing experimental data (i.e. not postulating but “proving” the law).
Actually this is not true: the principle of adiabatic inaccessibility
is a postulate (i.e. a hypothesis assumed without proof) to the same
extent as the above mentioned Clausius postulate; in fact, Carathéo-
dory’s principle in the final analysis postulates the unprovable pro-
position that the Pfaffian form dQ in n variables is always holonomic.

2.3 The Relationships Between Derivatives

2.3.1. The expression for the total differential of a function z (z, y)

dz = Mdzx + N dy, . (2.63)
where M = (9z/9z), and N = (9z/0y),, clearly shows that
dz . or ]
( om )n_M( am )n+N( om )n' (264)

This relationship is often used in thermodynamics. For instance,
from Eq. (1.27a)

Tds=du -+ pdv
combined with (2.64) it follows that

T( g; )T:( g; )T+p( g; )T' (2.65)

It is clear that since M = (0z/0z), and N = (9z/0y),, Eq. (2.64)
can also be written in the following form:

(o )= (=), (5 )t (). (o) (260

If we put m = z and n = z, we find that

(), (=) (5) -t (267

Obviously, if a quantity z is a function oi two variables z and y,
or z = z (z, y), we are justified in considering z as a function of y
and z, or x = z (y, 2), and y as a function of z and z, or y = y (z. 2).
Equation (2.G7) uniquely relates all possible derivatives of these
three functions.

This equation (a linkage of three derivatives) is widely used in
thermodynamics. According to (2.67), for p, v, and T we have

(7). (5 ), (G ) = 1 (2.68)




2. The Mathematical Tools of Thermodynamics 27

for h, u, and s

(5 )o (5 ), (5 ), = — 1 (2.69)

and for p, s, and v

(5=).(5), (), = — 1. (2.70)

2.3.2. If we set m = z but n = z, then from (2.66) there follows
one more useful relationship:

(&)= () (E ). e

This equation can be used to relate the partial derivatives of given
quantities that have been calculated with different constant para-
meters. For instance, if we wish to find the relation between the
derivatives (dp/dT), and (8p/dT),, from (2.71) it follows that

(%) =)+ (S (=), e

Concerning Eq. (2.71) the following question can arise: since z
is, indeed, a function of only two variables, z and y, the derivative
(0z/0z) from (2.71) is calculated with m kept constant. But what is
the quantity m, a new variable? Not at all. The quantity z depends
only on two variables, £ and y, and m represents one more function
of the same variables z and y. We illustrate this statement with the
following examples.

Let m = z? 4+ 2y. We wish to find the relation between the deriva-
tives (0z/0z), and (02/0z)y:4q,. From (2.71) it follows that

(5 )= (Gl (5 ) () e @7)

On the other hand, using (2.67) we can write
a (z2+2y) I
y

(—%— )x‘l+2y - [ 0 (Igfl-‘zy) J ’ (2.74)
. dy

X

whence we easily find that

( j.: )x2+2y=_x (2.75)

and, therefore,

(=) sern={ e ),—=(—5=).. (2.76)
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Let us suppose, further, that m = zy. From (2.71) it follows that
0z {0z 0z oy
( ox )xy—( oz )y+( dy )x ( oz )xy' (277)

Equation (2.67) implies that

Ly )
(%)= —Tf—)— (2.78)
we also note that v |
(55)=—F 2.79)
and, hence,
(5 )=~ (). (2.80)

As we will subsequently show, Eq. (2.71) is widely used in the
various transformations of thermodynamic differential equations.
2.3.3. In Sec. 2.1.1 we pointed out that in thermodynamics the
quantities r and y in (2.24) may be rigidly related and, hence, z is
in fact a function of only one variable z. From (2.71) it follows that

=), () 28

x dx

‘We note that dz/dx is known as the total derivative.
In accordance with (2.8) we can write

dy __ dy dz
dxr ~ dz dx ° (2'82)

From (2.81) we then obtain the following:

(<), () () ()= sy

On the basis of this we can obtain useful equations for calculating
thermodynamic quantities (see Chap. 7).

2.4 The Legendre Transformation

2.4.1. The transformation that changes the roles of dependent and
independent variables is called the Legendre transformation.®

3 This transformation, suggested by A. Legendre in 1789, is a particular
case of the so-called contact transformations.
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Let us consider an arbitrary function of several variables,

F, (z, y, 2z, . . .). Obviously, a total differential of this function can
be written in the form
dF, = Xde +Ydy+27Zdz + ..., (2.84)
where
_( 0F, , ( OF, [ OF,
X—( oz )y.z, ) 1 __( oy )x,z,...’ Z—( 0z )x,y,...’
(2.85)
etc. Obviously, X, Y, Z, . . . are functions of variables z, y, z, .. ..
Let us introduce the function
Fo=F — Xz. (2.86)
It is obvious that
dF, = dF, — X dz — z dX, (2.87)
whence, taking into account (2.84), we have
dF, = —zdX +Ydy +Zdz+. ... (2.88)
Thus, this transformation yields the transition from independent
variables z, y, z, . .. to independent variables X, y, z, ... and,

hence, z becomes dependent and X independent. In other words, to
change the roles of dependent and independent variables, it is
necessary to make use of the following relation:

Xdzxr =d(Xz) — zdX. (2.89)

2.4.2. As we will show below (Chap. 3), by applying the Legendre
transformation (2.89) to the function U we can obtain a number of
important thermodynamic functions (the so-called characteristic
functions); here we use the relations of type (2.89), in which variables
T, p, and & arc substituted for s, v, and w, respectively. F. Massieu
was the first to apply the Legendre transformations of thermodyna-
mic functions in 1869.

2.5 The Discontinuities of Thermodynamic Functions

2.5.1. The notion of continuity of a function is one of the most
important in mathematics. We recall that a function f (z) is said
to be continuous at a point a if (a) this function is defined throughout
a neighbourhood of a, (b) there exist limits of this function lim f ()

X—=a
from the left and right of point a, and (c) these limits coincide with
the value which the function assumes at £ = a. This definition can

be written thus:

fla+0)=7(a—0) =/(a), (2.90)
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where we have introduced the following notations:

Im f(z)=f(a+0) (2.91)
x—a+0
and
lim f(z)=f(a—0); (2.92)
x—-a-0

here z — a -+ 0 means that z tends to a from values of z greater
than @, and z - @ — 0 mecans that zr tends to a from values of z
less than a.

If condition (2.90) is not met, then the function f (z) has a dis-
continuity at point a.

[t is customary to divide the points of discontinuity into two
categories:

(1) Point a is called a point of discontinuity of the first kind if
there exist the limits of the function f (z) from the left and right of @

f(l‘) \ f(.r)A
f(x-a)e
f(x+a)s
2 z
(%)
Fig. 2.1

but at least one of these limits, f (¢ + 0) or f (e — 0), is distinct
from f (a).

(2) ALl other points of discontinuity are called points of discon-
tinuity of the second kind. Obviously, at a point of discontinuity
of the second kind a function has no limit.

Examples of the points of discontinuity of a function are given
in Fig. 2.1; (a) a discontinuity of the first kind, and (b) a discon-
tinuity of the second kind.

2.5.2. In the same way as we dealt above with a function of one
variable, we can introduce the notion of a continuous function of two
or more variables and, correspondingly, a classification of points of
discontinuity of the function. Clearly, the points of discontinuity
of a function z = z (z, y) can form a line of discontinuity, and
the function undergoes a discontinuity when passing across this line.
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It is the lines of discontinuity of a function that we have to deal
with mostly in thermodynamics.

2.5.3. Thermodynamic functions are continuous throughout a
thermodynamic state surface except in the regions of phase tran-
sitions. When we cross a boundary curve separating a one-phase
region from a two-phase region, thermodynamic functions undergo
a jump; in other words, boundary curves are the lines of discon-
tinuity of thermodynamic functions. For some functlions this is a
discontinuity of the first kind. Examples are the isochoric heat
capacity c,. the adiabatic exponent, the sound velocity, and the
Joule-Thomson coefficient. These undergo a finite jump when cros-
sing the boundary curve. For other thermodynamic functions, such as
the isobaric heat capacity ¢, and the quantities (9v/dT), and (0v/dp) r,
this is a discontinuity of the second kind; everywhere on the boundary
curve except at the critical point the functions have a limit when
approaching the boundary curve from the one-phase region and
become infinite when approaching the curve from the two-phase
region, while at the critical point there are no limits of these func-
tions from either left or right.

The behaviour of thermodynamic systems on the lines of discon-
tinuity is treated in detail below, in Chaps. 6 through 8. It is con-
venient to consider the variation of a thermodynamic function of two
variables, z = z (z, y), with the value of one variable kept constant
(e.g. with y = const), i.e. to analyze the variation of the thermo-
dynamic function along the line y = const when this line intersects
the line of discontinuity of the function (boundary curve).

2.6 Jacobians

2.6.1. A useful tool for the operations on thermodynamic differen-
tial equations is the functional determinants, or Jacobians.
The Jacobian of z and y for two independent variables m and n

is the determinant
om Jn v on Jm

(). ().

where z = f; (m, n) and y = f, (m, n). The customary notation is

oz or
(7(.‘1,‘, y) ( dm )n ( on )m
L , (2.93)
(), ().
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It is obvious that
d(m, n) _( om )n( on )m on m( prre )n. (2.94)

2.6.2. Jacobians have the following basic properties.
(1) Since according to (2.93)

oy dy
o, ) (W)n ( on )m (2.95)
a(m, n) ( dz ) ( oz ) '
am /n on /m
and, thercfore,
9 (y, z) 9 Az \ 9 d ,
0(7‘1711,::2) =(-0_r!7/1—)n(%)m—(%)m(-0_:l)n’ (2.96)
comparing (2.95) and (2.96), we see that
a(yv I) —_ 0(1, y) (2 97)
d(m,n) d(myn) " )
(2) Since according to (2.93)
ay oy
d (y, 2) . (E)Z (E)x (2 ()8)
a(x,z)_(iz_‘ (E) ? N
oy )z 0z /x
or
dy dy
0( ! )— 0z z oz x
A em
we see that
a(y, 2) a
a(i,z) =(0—Z)z' (2.100)

It is obvious then that all partial derivatives can be represented by
Jacobians.

(3) It is casy to sec that
d(y.z) d(a,b)  d(y.7)

d(a,b) d(myn)  d(m,n) " (2.101)
(4) From (2.93) it also follows that
d(m.n)
T = b (2.102)
d(x,x)
T mony O (2.103)
and
9 (k, z) .
a(m,In) =0 if k=const. (2.104)
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9.6.3. Equations (2.97), (2.100), and (2.101) make it possible to
transform the partial derivatives of thermodynamic quantitics
quite casily.* |

Let us transform,i or instance, the quantity (07/dp),. In accordance
with (2.100) we may write

oT \ __ o(T.s) -
(_ﬁ-)s_ o(p.s)* (2.105)

According to (2.97),
a(T.s) a(s.T) ,
o(p.s)  o0(ps)? (2.106)

while

(s, Ty _ 0(s.T) | d(p,s) -
o(p,s)  dip. 1) / a7 (2.107)

in conformity with (2.101). But according to (2.100),

d(s.T) _( 0s

a(p.T) ‘"( ap )T (2.108)
and

a(p,s) __( Os

a(p.T) —( or )p' (2.109)

Consequently, we see that

(57). == () (), (2:410)

Let us now express the quantity (4s/dT), in terms of (8s/aT)p.
To this end we make the following transformations:

Js __ d(s,v)
(o7 ).=55r 2.111)

and, in accordance with (2.101),

d(s.v) _ (s, ) 2 (s, v) 9
o(T,v) — 8(T,p)| a(T,p) (2.112)

Since by (2.94)
%:(%)p (%)T—(%)T(%)p (2.113)

4 In 1934 A.N. Shaw was the first to suggest using Jacobians for trans-
forming thermodynamic quantities.

3—0427
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and

oy _ (v 114
a(T,P)_(ap )T’ (2.112)

combining (2.111) with (2.112) and (2.68), we find that

as as ds ap

D) (&) (2 2P
((‘)T )v (aT )p ' ( op )T(@T )'D' (2115)
2.6.4. In conclusion we note that transformations of thermodynam-
ic quantities can be performed without resorting to Jacobians.

For one, relation (2.110) obtained in the above examples readily
follows from (2.67) and relation (2.115) from (2.71).



3 Characteristic
Functions and
Their Properties

3.1 The Basic Characteristic Functions

3.1.1. To examine the criteria for equilibrium in thermodynamic
systems we first introduce a number of important thermodynamic
functions.

In Chap. 1 we noted that the combined equation of the first and
second laws of thermodynamics is generally written in the form

(1.25):
TdS =dU + pdV 4+ EdW.

This relationship provides an important criterion for establishing
whether an isolated thermodynamic system is in equilibrium. We
recall that in thermodynamics a system is called isolated if it does
not exclhange heat or work with the surroundings. Hence, in such
a system the internal energy U, volume V, and generalized coordi-
nate W (the latter corresponds to work other than expansion work)
are constant.

In accordance with the second law of thermodynamics the entropy
of an isolated system tends to be maximal; in equilibrium it has the
greatest possible value for such a system. Indeed, since for an isolated
system dU = 0, dV = 0, and dW = 0, from (1.25) we see that

dS > 0. (3.1)

This condition determines the evolution of an isolated system. The
inequality sign corresponds to a nonequilibrium state of the system,
when the system is still on its way, so to say, to equilibrium state,
and the equality corresponds to a system already in equilibrium.
Thus for an isolated system in an equilibrium state

dsS = 0, (3.1a)

which is the criterion for equilibrium of an isolated system.

But if the system is not isolated from the surrounding medium
and can interact with it in some way (coupled with the medium, as
is sometimes said), the criteria for equilibrium will differ from (3.2).
They depend on the conditions in which the system interacts (couples)
with the surroundings.

3.1.2. For a system performing only work of expansion (simple
system) the following four types of interaction between the system

3



36 The Diflerential Equations of Thermodynamics

and the surrounding medium are the most interesting: V = const
and § = const, p = const and S = const, V = const and T =
= const, and p = const and 7 = const. The equilibrium criteria
for each interaction are as follows.

(1) Interaction conditions V = const and S = const. We write
the combined cequation for the first and second laws of thermody-
namics for simple systems (1.22),

T dS >dU + pdV,

in the form
dU < TdS — pdV. (3.2)

This implies that the evolution of this system, in which dV =0
and dS = 0, is restricted by the condition

dU < 0. (3.3)

Hence, in equilibrium
dU = 0. (3.3a)

Thus, as the system approaches equilibrium, its internal energy
decreases, becoming minimal in the equilibrium state.

(2) Interaction conditions p = const and S = const. If, in ac-
cordance with (2.89), we apply the Legendre transformation to p dV,

pdV =d(pV) — Vdp, (3.4)
and use the definition of enthalpy for simple systems (1.14),
H=U-+pV,
we can transform (1.22) to
dH << TdS + Vdp. (3.9)

This implies that a process in this system, in which dp = 0 and
dS = 0, takes place in such a way that the condition

dH <0 (3.6)
is met; hence, in equilibrium
dH = 0. (3.6a)

Thus, as the system approaches equilibrium, its enthalpy decreases,
becoming minimal in the equilibrium state.

(3) Interaction conditions ¥V = const and 7 = const. If we apply
the Legendre transformation to 7 dS,

TdS =d(TS)— SdT, (3.7
we can transform (1.22)
d(U—TS)< —SdT — pdV. (3.8)
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Introducing the notation

F=U-TS, (3.9)

we write (3.8) in the form
dF < —SdT — pdV. (3.10)
The thermodynamic function F is called the isochoric-isothermal

potential.
From (3.10) we can see that the evolution of this system, in which
dT = 0 and dV = 0, is restricted by the condition

df < 0. (3.11)

Hence, in equilibrium
dF = 0. (3.-11a)
Thus, as the system approaches equilibrium, its isochoric-isother-
mal potential decreases, becoming minimal in the equilibrium state.

(4) Interaction conditions p = const and 7 = const. Taking into
account (3.4) and (3.7), we can write Eq. (1.22) in the following form:

d(U + pV —T8) << —-8SdT + Vdp. (3.12)
Introducing the notation
O=U0+4+pV —T8S, (3.13)
we can write (3.12) in the form
db < —SdT + V dp. (3.14)
The thermodynamic function @ is called the isobaric-isothermal
potential.
From (3.13), (1.14), and (3.9) we see that
O=H-TS (3.15)
and
O =F -+ pV. (3.16)

It is evident from (3.14) that a process in an isobaric-isothermal
system takes place in such a way that the condition

dd < 0 (3.17)
is met; hence, in equilibrium
dd = 0. (3.17a)
Thus, as the system approaches equilibrium its isobaric-isothermal
potential decreases, becoming minimal in the equilibrium state.

We have thus stated the equilibrium criteria for simple thermo-
dynamic systems.
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3.1.3. When a system performs work other than work of expansion
(a complex system), the above criteria will be somewhat different.
For a complex system the combined equation for the first and second
laws of thermodynamics written in the form (1.24),

TdS = dU 4 pdV + dL*,
where in accordance with (1.7)

dL* = E dW,

yields the following results for the above four cases of a system
interacting with the surrounding medium:
(1) Interaction conditions V = const and § = const:

dU + dL* <0, (3.18)
i.e. in the equilibrium state
dU = —dL*; (3.18a)
(2) Interaction conditions p = const and S = const:
dif + dL.* <0, (3.19)
i.e. in the equilibrium state
dll = —dL¥*; (3.19a)
(3) Interaction conditions ¥V = const and 7 = const:
dF + dL* <0, (3.20)
i.e. in the equilibrium state
dF = —dL*; (3.20a)
(4) Interaction conditions p = const and 7 = const:
d® + dL* <0, (3.21)
i.e. in the equilibrium state
dd = —dL*. (3.21a)

As for a system that interacts with the surroundings under the
conditions that U and V are constant, it is clear that when the system
is complex, these conditions do not yet ensure that it is isolated (for
this it would also be necessary to have W constant). We see that in
this case, as is evident from Eq. (1.24),

TdS > dL*, (3.22)
or, which is the same,

S == dw, (3.23)
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i.e. in the equilibrium state

dS == dw. (3.24)

‘ﬂlrj’“‘

The quantities U, H, F, and @ are known as characteristic functions.

[t is important to note that the functions /' and d are formed from
state functions S, U, and H and, hence, are state functions, too.
Therefore, all four characteristic functions are state functions and,
hence, their differentials are total.

We can see from Egs. (3.18a), (3.19a), (3.20a), and (3.21a) that
the work a complex system can perform under given conditions of
coupling with the surrounding medium (after we have subtracted the
work of expansion!) is equal to the decrease in the corresponding
characteristic function. This is why, by a well-known analogy with
mechanics, the characteristic functions U, H, F, and @ are called
thermodynamic potentials.

3.1.4. Characteristic functions have the following important pro-
perty: if a characteristic function is known in terms of the corre-
sponding variables (different for each characteristic function), it can
be used to calculate any thermodynamic quantity. This is easily
verified.

(1) From Eq. (1.22) written in the form

dU = T dS — pdV (3.25)

and combined with Eq. (2.63), we see that

(%)V:T (3.26)
and
().~ o)

Thus, if the function U is expressed in terms of the variables V
and S, differentiating U with respect to one of these variables, pro-
vided that the other variable is kept constant, enables us to deter-
mine the values of p and 7. As a result the values of U, V, S, p, and
T are known, and we can easily calculate H, F, and ®.

(2) Taking (3.4) and (1.14) into account, we can write Eq. (3.25)
in the form

dH = T dS + V dp; (3.28)

1 In accordance with (1.6),
dL* — dL — p 4V,

which is why L* is sometimes called the net work.
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whence it follows that?

(%‘;i)p:T (3.29)
and
'(%f)i)szv. (3.30)

Thus, if the function II is expressed in terms of the variables p
and S, differentiating /7 with respect to one of these variables, pro-
vided that the other variable is kept constant, we can determine 7
and V. Whence we know the values of H, V, §, p, and T and can
easily calculate U, F, and O.

(3) If we use (3.7) to replace T dS in Eq. (3.25) and take into
account (3.9), we find that

dF = —8§dT — pdV. (3.31)

It is evident from this relation that

(%)V:. —S (3.32)
and
(%)Tz—p. (3.33)

Thus, if the function F is expressed in terms of the variables V
and 7, difierentiating F with respect to one of these variables, pro-
vided that the other variable is kept constant, we can determine S
and p. Whence we know the values of F, S, p, V, and T and can
calculate U, H, and OD.

(4) Finally, using (3.9) and (3.15), we find from (3.28) that

dd = —S dT + V dp. (3.34)

Whence it is clear that

(?a%)p: —S (3.35)
and
(%;I))—)T=V. (3.36)

Thus, if the function @ is expressed in terms of the variables p
and T, then differentiating ® with respect to one of these variables,
provided that the other variable is kept constant, we can determine S

2 The reader must bear in mind that any function formed by a simple algebra-
ic combination of state functions is itself a state function and, therefore, its
differential is total.
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and V. Whence we know the values of @, S, p, V, and T and can.

calculate U, H, and F.

3.1.5. Characteristic functions are additive quantities. Conse-
quently, the values of characteristic functions for an entire thermo-
dynamic system can be represented as a product of a specific (per unit.
mass) characteristic function by the mass of substance in Lhe system:

Internal energy

U = uG.
Enthalpy
H = hG,
where
h=u -4 pv.
Isochoric-isothermal potential
F = |G,
where
f=u—Ts.
Isobaric-isothermal potential
O = G,
where

o =u —+ pv— Ts,
or, which is the same,
o ="nh—Ts
and
¢ = [+ pv.

(3.37)
(3.38)
(3.39)

(3.40)

(3.41)

(3.43)

(3.44)

(3.45)

It is clear of course that if the amonnt of substance in the system
is fixed (G = const), the relations (3.25)-(3.27) can he represented

in the following form:
du=T ds— pdv,

(5 ).=7
(&)= —»

the relations (3.28)-(3.30) in the form
dh = T ds + v dp,

(%)=

(6h) —
op /s 7’

(3.25a)
(3.26a)

(3.27a)

(3.28a)
(3.29a)

(3.30a)
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the relations (3.31)-(3.33) in the form

df = —sd1l — pdv, (3.31a)
0 .
(a_;) — s, (3.32a)
( 9f .
(W)T = — p; (3.33a)
and the relations (3.34)-(3.36) in the form
d¢ = —sdT + v dp, (3.34a)
d -
(0_?-)132 — 8, (3303)
99\ _
(a—p-)T =v. (3.36a)

3.1.6. Let us now consider the equilibrium criteria for systems
in other conditions of interaction with the surroundings; namely,
when in addition to the conditions enumerated above the values of
generalized force & or generalized coordinate W, which characterize
the given type of work, remain coustant.

As for an isolated system (U, V, and W constant), according to
the second law of thermodynamics the equilibrium criterion, as noted
above, states that the system’s entropy mus! be maximal; this is
evident, in particular, from the combined equation of the first and
second laws of tliermodynamics for a complex system written in the
form (1.25):

T dS > dU + pdV + & dW.

If we turn to systems that interact with the surrounding medium,
we discover that the following types of interaction are of interest:
V, S, and W are constant; p, S, and & are constant; V, T, and W
are constant; and p, 7, and & are constant.

To find the equilibrium criteria for such systems we will use the
method employed above.

(1) Interaction conditions V, S. and W constant. If we write
Eq. (1.25) in the form

dU < TdS — pdV — EdW, (3.46)

we can see that the evolution of a system, in which dV = 0, dS = 0,
and dW = 0, is determined by the condition

alu < 0 (3.47)
hence in equilibrium

dU = 0. (3.47a)



3. Characteristic Functions and Their Properties 43

Thus the criterion for equilibrium for a complex system, in which
V, S, and W are constant, is the same as for a simple system with V
and S constant (see Egs. (3.3) and (3.3a)).

(2) Interaction conditions p, S, and & constant. The product & dW
in Eq. (1.25) can be represented via the Legendre transformation
(2.89) as

EdW = d (EW) — W d& (3.48)

Combining this relation with (1.14) and (3.4), we can transform
Eq. (1.25) to

dH + EW)< TdS + Vdp 4+ W dE. (3.49)

From (i.14) and (1.15) it is evident that
H 4+ EW = H*, (3.50)

using this relation, we can write (3.49) as
dH* < TdS + Vdp + WdE. (3.91)

We can see that in a complex system in which dp = 0, dS = 0,
and dg = 0 the evolution is determined by the condition

dH* < 0; (3.52)
hence in the equilibrium state
dH* = 0. (3.52a)

The reader will recall that the quantity H* is the enthalpy of a
complex system; it is related to the enthalpy H by Eq. (3.50), and
in accordance with (1.15)

H* = U + pV + EW.

Thus, the equilibrium criterion for the complex system under
consideration is the same as for the simple system in which p and S
are constant (see Eqs. (3.6) and (3.6a)), the difference being that the
quantity H* in Eqs. (3.52) and (3.52a) differs from the usual en-
thalpy H.

(3) Interaction conditions V, T, and W constant. If we use Egs.
(3.7) and (3.9), we can write (1.25) as

dF < =S dT — pdV — EdW. (3.53)
It follows that in a complex system in which dV = 0, dT = 0, and
dW = 0 the evolution is determined by the condition
dF <0, (3.54)
i.e. in equilibrium
dF = 0. (3.54a)
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Thus, the equilibrium criterion for this complex system is the
same as for a simple isochoric-isothermal system (see Eqs. (3.11) and
(3.114a)).

(4) Interaction conditions p, T, and & constant. Considering (3.4),
(3.7), (3.13), and (3.48), we can transform Iiq. (1.25) to

d (D + W) < —SdT + Vdp + W dt. (3.55)

We introduce the notation
OF = 0 + EW. (3.56)
Then (3.55) becomes
dO* < —SdT + Vdp 4 W dE. (3.37)

Wlhence it follows that in a system in wlhich dp = 0, dT = 0,
and d& = 0 all processes occur in such a way that
dd* < 0, (3.58)
i.e. in equilibrium

dd* = 0, (3.58a)

The quantity ®* can be regarded as the isobaric-isothermal potlen-
tial for a complex system. This quantity is related to the common
isobaric-isothermal potential via Eq. (3.56).

From (3.13), (3.13), (3.16), (3.20), and (3.56) we see that

O* = U 4 pV + EW — TS, (3.59)
O* = * — T8, (3.60)

and
O* = F +- pV + EIV. (3.61)

In this form the equilibrium criterion for a complex system is
similar to that for a simple system (see Iiqs. (3.17) and (3.17a)), the
difference being that Eqs. (3.58) and (3.58a) contain M* instead of
thie usual isobaric-isothermal potential @.

These are the criteria of equilibrium for thermodynamic systems
that perform other work besides work of expansion and whose con
ditions of interaction with Lhe surroundings are such that, in addi-
tion to the usual interaction conditions, either & or W is kept con-
stant.

3.1.7. In conclusion let us consider relationships similar to Eqs.
(3.25) through (3.45) for the case of a complex thermodynamic system.
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(1) From Eq. (1.30) written in the form

dU = T dS — p dv — & dW, (3.62)
we have
aUu
(6_-)1', WZT’ (3.63)
oU
(_a—)s, A (3.64)
and
oU -
(), -t 69

If the amount of substance in the system remains unchanged
(G = const), we can write the same relations for specific quantities:

du=Tds— pdv—E§dw, (3.62a)
du
(%),.,=7 59
7]
(%5 )y u=—"P (5.04a)
and
0 -
(-5%)8,1.: & (3.653)

(2) Combining (3.4), (3.48), and (3.50), we can transform Eq. (3.62)
to

dH* = T dS + Vdp + W dE. (3.66)
Whence it is evident that
af*
(S5 )p’ =T, (3.67)
dH*
( > )S. =V, (3.68)
oH* B
( = )S' =W (3.69)
For the specific quantities the relations are as follows:
dh* = T ds + vdp 4 w dE, (3.66a)
(%), =7 (3.67a)
ds P, §— ! )
oh*
( a ) .=V, (3.68a)

and

( ‘;’g )., =w. (3.69a)
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Here, obviously,

h* = h 4+ Ew," (3.50a)
or
h* = u + pv + Ew (3.53a)
and
H* = I*G. (3.38a)

(3) If we substitute the quantity 7' dS in Eq. (3.62) by applying
(3.7) and bear in mind (3.9), we find that

dF = —SdT — p dV — E dW, (3.70)

which implies that

or
(a_)v w=—5 (3-71)
oF -
(W)T. wo P (3.72)
and
ar -
(_al—V)T,V: —& (3-73)
The relations for specific quantities are written in similar form:
df = —sdT — p dv — E dw, (3.70a)
d -
({7) =5, (3.71a)
d -
(55 )z =P (3.722)
and
3 _ -
(W)T.v—_g' (3.73)

(4) Finally, substituting in (3.66) the quantity 7 dS with the help
of (3.7) and bearing in mind (3.60), we get

db* = —SdT + Vdp + W dE, (3.74)
whence
oD* 1~
(_a—T—)p, . —5, (3.75)
(2)  —v, (3.76)
P JT, §
and

( o0 )T_ =W (3.77)
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Similar relations for specific quantities have the following form:

dq* = —sdT + vdp + wdg, (3.74a)
ap* . e,
(%5 )p' == (3.752)
oG* . o
(55 )r =" (3.76a)
and
dg* o
( 5 )T'p_u/. (3.77a)
From (3.56) and (3.59) through (3.61) it is clear that
o* = ¢ + Ew, (3.506a)
or, which is the same,
¢ =u+pvr+ &w — Ts, (3.59a)
¢* = h* — Ts, (3.60a)
and
o* = f + pv + Ew. (3-61a)

It is also clear that
O* = ¢p*G. (3.42a)

3.2 The Chemical Potential

3.2.1. The chemical potential is one of the most important thermo-
dynamic functions.

The chemical potential of a substance is its mass specific isobaric-
isothermal potential. For simple systems it is defined by relation

(3.43)
¢ =u—+ pv— Ts,
while for complex systems by (3.59a)
¢o* = u + pv 4 tw — Ts.

The chemical potential occupies a special position with respect
to other mass specific thermodynamic potentials, such as the internal
energy u, enthalpy & (or £*), and isochoric-isothermal potential f.
The explanation is as follows.

3.2.2. When we considered the equilibrium criteria for thermody-
namic systems that interact with the surrounding medium, we tacitly
assumed that the amount of substance G in the system does not
change. However, in a number of problems it is necessary to estab-
lish how the thermodynamic potentials of the system change when
a certain amount of substance is taken {rom or added to the system.
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{Naturally, the substance added must have the same state para-
meters as the main substance.) Hence we must find the quantities:
(a) simple systems

aU . 14 aH N
— ' 7
( 3G )V,S for systems with V and S constant, (-——aG )p' Sfor systems

with p and S constant, (%%)V Tfor systems with V and T constant,
(% ’
oG
(b) complex syslems

(aqi) for systems wilh V, S, and ¥ constant, (
L oG Jv,s, w ’

) aF
systems with p, S, and E constant, (ﬁ)v, T, W

*
V, T, and W constant, (aair')p o for systems with p, 7, and ¢
= L 'S

) TEor systems with p and T constant,
p'

6H*)
G /p, S, ¢

for systems with

for

constant.
3.2.3. Often we encounter a rather widespread fallacy. The relations
for simple systems given ahove, namely

= uG, (3.37)
H = G, (3.38)
F = {G, (3.40)
@ = ¢G, (3.42)

and the equivalent relations for complex systems yield, it may appear
at first glance, the trivial conclusion that (dU/0G)y s is equal to u,
(0H/3G)p, 5 to h, (0F/0G)y  r to f, and so on. This conclusion is wrong.
Consider, for example, the derivative (0U/0G)- 5. 1f the derivative
dU/dG were computed under the condition that the state parameters
were constant (say, s and v were constant), the specific internal
energy u would also be constant and from (3.37) it would follow that

(%%)’ =u. (3.43)

However, the point is that (0U/dG) s y- is computed provided that the
values of entropy and volume of the entire system are constant
(S and V are constant), whereas from the elementary relations of
additivity of entropy

S = sG (3.78)

and volume
V =1G (3.79)

it is clear that, if S and V are constant and G varies, the values of the
specific quantities s and v (and, naturally, all other state parameters
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of the system) also vary, and so does the value of u. It is obvious
then that
oU oU
(e )v, s 7 (56 )s, » (3-80)
The reader must clearly realize the fundamental difference between
these derivatives. The following quantities differ in the same way:
(0H/9G), s and (0H/0G)p, s = h, and (9F/9G)v 1 and (OF/0G),, r = .
3.2.4. Now let us compute the derivatives of the thermodynamic

quantities listed in Sec. 3.2.1.
(1) The derivative (0U/dG)y, 5. It is evident that (see (3.37))

(%)V. s:( 0612;0 )V, s’ (3.81)
whence
(%g—)x’.szu+G(%)v,s’ (3-82)
Further, in accordance with (2.71) we can write
(2= ()t (BB o

In a similar manner we can write for the quantity (du/dG)y s in
Eq. (3.83) the following:

(%Z—)V, s:(%)v,s+(%)6.s(%)V. s; (384)

hence, (3.83) can be represented in the following form:

(06_’2)1', s: (%)v. s+ (-Z_Z)G,s (%)V. s+ (%)V G (%)V. s’
(3.85)

Let us consider the partial derivatives on the right-hand side of
this relation.

First, since it is obvious that if v and s are constant, i.e. thermo-
dynamic parameters of the system remain unchanged, by virtue of
this u = const; consequently,

du
(E) =0. (3.86)

Second, the fact that the quantity G is kept constant in the process
of differentiation is not necessarily applied to specific quantities;
hence it is understood that (du/dv);  is simply the derivative
(@u/dv)s. Therefore, taking into account (3.27a), we find that

(-?—u)c"z —Pp. (3.87)

ov

b—0427



50 The Differential Equations of Thermodynamics

Third, since, as it is clear from (3.79),

v = Vi, (3.792)
we see that
v v i
(—(ﬁ/‘v, s GE? (3.88)
or, which is the same,
av v
(6—6) =7 (3.89)

Fourth, if in the process of differentiation V and G remain constant,
then v is constant and, if we bear in mind (3.26a), the derivative
(8ulds)y ¢ can be written thus:

du
(a_s)v' =T (3.90)
Last, since from (3.78) it is evident that
s = S/G, (3.78a)
we See that
0 S
('5%)»', = (3.91)
or, which is the same,
)
(%) = (3.92)

Substituting (3.86), (3.87), (3.89), (3.90), and (3.92) into (3.85),
we obtain

(%), =25 (3.9
Combining this with (3.82), we find that
(%), c=u+pv—Ts, (3.94)
or, bearing in mind (3.43),
(55), = (3.95)
(2) The derivative (0 H/0G),, s. From (3.38) it is clear that
(%), = (57 ),.s (3.96)

and, hence,
(%)p’ =h+G (

SE

), s (3.97)
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In accordance with (2.71) we write

(%)p,sz(%)p,s+(%)p,G(%)p's’ (398)

which implies that

oh
(52),..=0 (3.99)
In fact, if the state parameters of the system remain unchanged
(p and s are constant), 2 cannot vary either.

It is obvious (see (3.29a)) that

(), ~n 10
while if we bear in mind (3.78a)
s = S/G,
we obtain
(f—é)p = —, (3.101)
or, which is the same,
(%)p.sz _._SG_, (3.102)
Substituting (3.99), (3.100), and (3.102) into (3.98), we get
(%)p.s=__7(';., (3.103)
Therefore, Eq. (3.97) can be written in the form
(S ) =h—Ts, (3.104)
whence it is clear (see (3.44)) that
(%5), =e (3.105)
(3) The derivative (0F/0G)y, r. From (3.40) it is evident that
(%)V,T:(%fg)V.T’ (3.106)
or, which is the same,
(%) e=1+€(5E )y, o (3407
If we use (2.71), we find that
(%) =5 ) o+ (F)en (B )y, B1OD
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If v and T are constant, then f is constant too. Hence,

(L) = 3.109
( aG )'v T_O. ( )
From (3.33a) it is clear that
L P— 3.110
(av )G_ r p ( )
while from (3.79a)
v=V/G
it is clear that
v _ ¥
(% )v..= = (3.111)
or
v v ‘
(T?E)V, T G * (3.112)
Combining (3.109), (3.110), and (3.112), we find from (3.108) that
af __ pv
(?3_G—)V, T G ° (3.113)
If we substitute this value into (3.107), we obtain
oF
(E)v, =1+pv, (3.114)
or, using (3.45),
oF . -
(56 )y r=9 (3.115)

(4) The derivative (0d/9G),, r. This is computed very simply.
Indeed, from (3.42) it is clear that

(2, ~vre(B),,

But since at p = constant and T = constant ¢ is also constant,
naturally

aP o -
(ﬁ)”_o (3.117)
and, hence,
D
(% )5, =2 (3-118)

3.2.5. Thus, we have arrived at a somewhat unexpected conclusion
that for systems in which V and S are constant, p and S are constant,
V and T are constant, or p and T are constant the derivative of the
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corresponding characteristic function with respect to the amount of
substance in the system is equal to ¢, i.e.

(Z—Z)V s:(g@%)p, S:(%)V T:(%%)p' r
(3.119)

It is easy to show that for the corresponding complex systems we
have similar relationships:

(%g_)v,s, IV=(aaI({;*)p, s, gz(—gg)v, T, wz(a—a%_*)p, T, §:(P*’
(3.120)

where ¢* is defined in (3.59a).

Thus, the quantity ¢ (or ¢* for complex systems) has a remark-
able property: it enables us to compute the variation of a character-
istic function of any system when the amount of a substance in the
system is varied; for this reason this quantity has been termed the
chemical potential.

3.2.6. It is appropriate to note that the question of the chemical
potential is usually presented in thermodynamics courses in such
a concise form that the reader often does not understand why this
seemingly ordinary thermodynamic function, the specific isobaric-
isothermal potential, occupies a special place as compared to other
specific characteristic functions. We may often come across gross
errors in both presenting these questions and using this quantity in
computations. The reason for this, in our opinion, is also the fact
that when employing the traditional method of deriving relations
(3.120), the mathematical and physical sense of the operations per-
formed is concealed. Let us consider, for example, how the quantity
(0U/3G)y s is calculated in thermodynamics.

From (3.37)

U=uG
it follows that
dU = G du + u dG; (3.121)
since in accordance with (3.25a)
du = T ds — p dv,

Eq. (3.80) can be transformed to

dU = TG ds — pG dv + u dG. (3.122)
Using Legendre transformations
G ds = d (Gs) — s dG (3.123)

and

G dv = d (Gv) = vdG (3.124)
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und combining (3.78) with (3.79), from (3.122) we find that
=W+ pv—"Ts)dG + TdS — pdV. (3.125)

Since in the system under consideration S and V are constant,
taking into account (3.43) we obtain for the given system

dU = ¢ dG (3.126)

(%[GL)S.V:(P.

The method of deriving relations (3.120) given above, Sec. 3.2.4,
appears to have certain advantages as compared to the method con-
sidered here.

3.2.7. One more remark is in order. As noted earlier (see Sec. 3.1.1),
the quantity that characterizes the equilibrium state of an isolated
system is entropy (in the equilibrium state entropy is maximal).
Entropy is not a thermodynamic potential. It is interesting to note,
however, that the derivative of the entropy of an isolated system
with respect to G is closely related to the chemical potential. Indeed,
(3.78) yields

and whence

EI—T 120
Using (2.71), we find that
(-‘%)U"z(%)u,v+(%)a.v (%)U v (3-128)
and, in its turn,
(56 )0 v=(58) 0. +(2). (&) v (3.129)

These relations yield
(@ )o.v= ()0 o () o (5 )+ (55, v

Next, since (a)

LV
(3.130)

(g_G) —0, (3.131)
(b) it is obvious from (1.27 a) tha
(ghs) (3.132)
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(c) according to (3.26)

as 1
(35). v=T (3.133)
and from (3.37) and (3.79) it follows, respectively, that (d)
du u
(% )e.v=—% (3.134)
and (e)
av v
(). ,=—% (3.135)
from (3.130) we obtain
ds _ u-+ pv
(5 )o,v= "5~ (3.136)
If we substitute (3.136) into (3.127), we find that
as _ u+pv—Ts
(36 )y v= — 25— (3.137)
or, using (3.143),
as _ (1)
(W)U, v  T° (3.138)

Obviously, this relation refers to a simple isolated system (U and V
constant). A similar relation can be obtained for a complex isolated
system (U, V, and W constant):

(%)U, v, wo (PT* . (3'139)

We also see that in the case where the amount of substance in the
system changes (i.e. when one more variable appears characterizing
the state of the system, the amount of a substance in the system G),
the expression for the total differential of the entropy of a simple
system can be written in the following form:

s = (%)V.GdU—l_ (g_i)u, GdV+ (g_g)U. VdG' (3.140)

Then, from (3.26) it is clear that

(%)V,G=%’ (3-141)

and from (1.27) it follows that

(g—f,)U'Gz—,ﬁ-. (3.142)
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Combining these relations with (3.139), we find from (3.140) that

1 p P
dS—TdU+T dV——?dG, (3.143)
or
T'dS =dU + pdV — ¢ dG. (3.144)
In a similar manner for a complex system we ohtain
TdS =dU + pdV + EdW — o¢* dG. (3.145)

For simple and complex systems, respectively, relations (3.142)
and (3.143) represent the combined equation of the first and second
laws of thermodynamics for systems with variable amount of sub-
stance.® Both are sometimes called the fundamental equation of
Gibbs.

3.2.8. From (3.119) and (3.120) it is clear that the total differentials
of the characteristic functions expressed through “their” variables
(for the case when the amount of substance in the system changes)
have the following form for simple systems:

dU =T dS — pdV + ¢ dG, (3.146)
dH = T dS + Vdp + ¢ dG, (3.147)
dF = —§8dT — p dV + ¢ dG, (3.148)
db = —SdT + Vdp + ¢ dG (3.149)
and, respectively, for complex systems:
dU=TdS —pdV—tdW + ¢*dG, (3.150)
AdA*=TdS+Vdp+ W dE+ 9*dG, (3.151)
dF = —S8dT — pdV —EdW + o* dG, (3.192)
d®* = — S§dT 4+ Vdp+ W dE + ¢* dG. (3.153)
3.2.9. Employing Legendre transformations (3.7), (3.4), and

¢ dG = d (9G) — G dg (3.154)

and assuming that in accordance with (3.42)

O = oG,

we can transform Eq. (3.144) to
d(TS) — SdT =dU + d (pV) — Vdp —d® + Gdy, (3.155)
or, which is the same,

SdT — Vdp + Gde + d (U 4 pV — TS) — d®d = 0. (3.156)

3 We note that it is not obligatory to use the mass of a substance as a variable
characterizing the amount of a substance in the system. In chemical thermo-
dynamics a number of moles is usually used as such a variable.
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From this and (3.13) it is obvious that
SdT — Vdp + Gdp = 0. (3.157)

This important thermodynamic relation is called the Gibbs-
Duhem equation and is widely used in chemical thermodynamics.

In the same way we cau easily obtain the Gibbs-Duhem equation
for complex thermodynamic systems:

SdTl — Vdp — Wdt 4 Gdo* = 0. (3.158)
3.2.10. We note that the relations obtained above, namely
(&) =57 (3.93)
(fgg)p,s:: —Z, (3.103)
(g—é)v T:%’ (3.113)
(%)U v - Gpv ’ (3-136)

and their analogs for complex systems are, obviously, interesting in
themselves: they show how the specific values of characteristic
functions (and entropy) vary with the amount of substance in the
corresponding thermodynamic systems.

3.3 The Massieu-Planck Functions

3.3.1. At one time it was suggested that characteristic functions
other than U, H, F, and ® should be introduced. But in thermody-
namic calculations these functions are not used (for reasons considered
below; see Sec. 3.3.7). Nevertheless, we find it expedient, from the
pedagogical point of view to discuss these functions at least briefly.

3.3.2. It is easy to see that the method of introducing characteristic
functions discussed in Sec. 3.1 was the same: we applied Legendre
transformations (3.4), (3.7), and (3.48) to the combined equation of
the first and second laws of thermodynamics written in form (1.27)
or (1.30) (for simple or complex systems, respectively).

Somewhat different characteristic functions, usually called the
Massieu-Planck functions, can be obtained if we apply the Legendre
transformation to Eq. (1.27) in the following form:

1 7
dS = dU +-L dV. (3.159)

Let us consider this relation.
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(1) For a simple system in which U and V are constant (isolaled
system) there follows from (3.159) the well-known equilibrium con-
dition (3.1a)

dS = 0.
Whence
(%)V_% (3.160)
and
(47), =+ (3.161)

Entropy is a characteristic function if expressed in terms of U
and V, i.e. by finding the derivative of S with respect to onc of these
variables and keeping the other constant we can find the values of T
and p and, as a result, the values of S, p, V, T, and U. (The reader
must bear in mind that entropy is not a thermodynamic potential.)

It is easy to see that if we combine Eq. (3.4) with (1.14) and
(3.159), we find that

1 1%
dS = dH ——=dp. (3.162)
Hence it is clear that condition (3.1a)
dS =0

will also be an equilibrium for such simple systems in which A and
are constant.
From (3.162) it follows that

(47),= T (3.163)
and
(%),=—7F (3.164)
Hence, entropy is a characteristic function if expressed in terms of
H and p.

Note that since entropy is a characteristic function of variables [/
and V and variables H and p, it belongs to the group of Massieu-

Planck functions.
(2) In accordance with (2.89) we may write

TdU=d(7)-va(r), (3.165)
which transforms (3.159) to

d(S—%)=—vd(F)++5av. (3.166)
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Hence, for a simple isochoric-isothermal system (V and T constant)
in equilibrium,

d(§ —U/T)=0. (3.167)
We introduce the notation
F=S8_—UI. (3.168)
If we bear in mind (3.9), we find that
F= —FIT. (3.169)

For an isochoric-isothermal system the function F plays the same

role as the isochoric-isothermal potential F. The function F is some-
times called the Massieu function.* From (3.166) and (3.168) it
follows that

(6—’;) =-U (3.170)
67- v
and

aF _ P

(G—V)UT—_T—" (3.171)

It is then clear that F is a characteristic function if expressed in
terms of variables V and 1/7.
(3) Next, in accordance with (2.89) we can write

Lav=a(L)-va(L). (3.172)
which transforms (3.166) to
d(s—%—%)=—vd(%)_w(§). (3.173)

It is clear that for simple isobaric-isothermal systems (p and T
constant) in equilibrium,

U 1A
d (s ——4)=o0. (3.174)
Let us introduce the notation
~ U pv
D=5—7—E-. (3.175)

4 F. Massieu was the first (1865) to apply the Legendre transformation to
thermodynamic equations; he was also the first to formulate the relations known
at present as the Gibbs-Helmholtz equations (see Sec. 5.2).
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Equation (3.13) yields
D = —d/T. (3.176)
It is obvious that for an isobaric-isothermal system the function o
plays the same role as the usual isobaric-isothermal potential. The

function @ is often called the Planck function.
From (3.173) and (3.176) it follows that

(6_“;) = U (3.177)
0? p/T
and
(-‘99;7) — 7. (3.178)
I )T

We see that the Planck function is a characteristic function if
expressed in terms of p/T and 1/T.
Since, naturally,

d(%):%dp—}—pd(%), (3.179)

Eq. (3.173) in accordance with (3.176) can be written in the following
form:

dﬁaz_Ud(%)_-T"_dp--de(%). (3.180)
Bearing in mind (1.14), we obtain
A= —Hd () —7dp. (3.181)
From this it follows that
(6—1) - (3.182)
O—T— .
and
oh v '
(%5 )i e=—7 (3.183)

Therefore, the Planck function is a characteristic function if ex-
pressed in terms of p and 1/T.

(4) Finally, if we substitute (3.172) into (3.159), we get

 ( ——pTV):%dU—Vd(%). (3.184)
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From this it is clear that for a simple thermodynamic system in which
U and p/T are constant, in a state of equilibrium,

a(s-4)=o0. (3.185)

Let us introduce the notation

I=s—2", (3.186)
or, which is the same,
[=12_PV (3.1862)
From (3.13) it follows that
=222 (3.187)
As we can see from (3.184),
al 1
(57 ) o= T (3.188)
and
(i";) —_V. (3.189)
T )y

Therefore, I is a characteristic function if expressed in terms of U
and p/T. Indeed, if we find the value of T with the help of (3.188)
and know p/T, we can find p; if then we find V with the help of
(3.189) and knowing p and 7, we can find S from (3.186); etc.

We should like to stress, however, that the function 7 is of purely
pedagogical interest. It has no practical application due to the
complex conditions in which the system must couple with the sur-
roundings (besides U being constant, the condition p/T = const
must be fulfilled, too).

3.3.3. Let us introduce the notion of the specific values of the
Massieu-Planck functions:

f==, (3.190)

Q& Q=

, (3.191)

S
Il

and

I
Q] ~

(3.192)
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1f we combine these relations with (3.168), (3.173), and (3.186),
we find that '

f=s—ul, (3.193)
¢ =s— puT, (3.194)
i =s— pul/T. (3.195)
Further, from (3.190), (3.169), and (3.40) it is clear that
7= —fT, (3.196)
and from (3.191), (3.176), and (3.42) that
p = —q/T. (3.197)

Obviously, if the amount of substance in the system remains un-
changed (G = const), (3.160) and (3.161) can be represented in the
following form:

(%)z% (3.160a)
and
(g_z)u:% (3.161a)

(see relations (3.133) and (3.132)); relations (3.166), (3.170), and
(3.171) can be represented in the form

df = —ud (%) Ly, (3.166a)
.
(_Q) = —u, (3.170a)
07 o
of P .
(E)UT:—T—’ (3.171a)

relations (3.172), (3.177), and (3.178) in the form

9= —ud () —vd (L), (3.172a)
(0

)
(5

SJ-f3:

) —~ —u, (3.177a)
/T

3.

N[

) - v, (3.178a)
1T
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and relations (3.184), (3.188), and (3.189) in the form

di=du—vd (&), (3.184a)
oi 1
(ﬁ)p/T=T ’ (31883)
(6_1) = — . (3.1893)
a2
T/u

3.3.4. If we use a method analogous to that applied in Sec. 3.2,
we can easily show that

(_gf?)u, v (%g_)v, YT (g—((];))p/r, YT (Z_é)v, p/T=$' (3.198)

We will recall that we have already obtained relation (3.138)

(iS_) =2
G Ju, v  T?
which, together with (3.197)

Q= —%9

is equivalent to (3.198). We are not surprised, naturally, that varia-
tion of these characteristic functions with the amount of substance
in the system is related to the value of the chemical potential ¢.

3.3.9. If we consider (3.198), we find that the total differentials
of these characteristic functions, expressed in terms of their “own”
variables, for the case where the amount of substance in the system
varies, have the following form:

1 p ~
dS=— dU + £ dV + 9 dG (3.199)

(this relation is, obviously, equivalent to (3.143)),

dF = —Ud (4 ) -+4dV + 546, (3.200)
id=—Ud ()—Va(£)+94d6, (3.201)
dl = dU— Vi (&) +9dG. (3.202)

1 , )
d(%)=—dp+pd4, (3.203)
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Eq. (3.201) combined with (1.14) can also be represented in the fol-
lowing form:

dD = —Hd ()~ dp+ ¢ dG. (3.204)

3.3.6. We introduce the Planck function and the function 7 for
complex thermodynamic systems along the same lines. Let us write
Eq. (1.30) in the form

1 £
dS = AU+ dV + = dW, (3.205)

and consider how this equation can be transformed for four types of
conditions of interaction of a complex system with the surrounding
medium, the conditions discussed in Sec. 3.3.2 for a simple system.
(1) For a complex system with U, V, and W constant (an isolated
system), it is obvious from (3.205) that condition (3.1a) is valid
just as for a simple isolated system. From (3.205) it follows that

1

oS
(_OF)V wo T (3.206)
S \ P -
( oV lu w— T (3.207)
(o )y v =7 (3.208)

(2) Bearing in mind (3.165), we can transform Eq. (3.205) to
d(S—4)=—Ud (- )-Lidv+idw (3.209)
T ‘T T ! )
or, bearing in mind (3.168),
S 1 p g
dF = —Ud (_T_) +f-dV+ = dW. (3.210)
Hence, it is clear that for a complex system with 1/7T, V, and W
constant in the equilibrium state

dF = 0. (3.211)

Thus, the expressions for the Massieu function are identical for
complex and simple systems (3.168)-(3.169) (relations (3.193) and
(3.196) for mass specific quantities), just as the expressions for the
isochoric-isothermal potential F, (3.9) and (3.41), are identical
for simple and complex systems.
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From (3.210) it also follows that

oF
( L) =-U (3.212)
o7 vV, W
oF P
( v ‘yr,w T ? (3.213)
and
oF ot
(W)“T_ L= (3.214)
(3) In accordance with (2.89) we may write
g _ 4 3 -
= dW =d () —Wd (<. (3.215)

Using (3.172) and (3.215), we can transform Eq. (3.209) to

(oYt ) (1) -va () -wa (£).

T 7
(3.216)
Let us introduce the notation
o U oV 1374

From (3.59) it is clear that
O+ = — O*/T. (3.218)

In terms of specific quantities these relations can be written thus:

o —s—m 2 E0 (3.217a)
and
o* = — ¢*/T. (3.218a)

Bearing in mind (3.218), we can write (3.216) in the form
a®* = —Ud () —Vd (L) —wa(+). (3.219)

For a complex system with 1/7T, p/T, and &/T constant (i.e., to put
it simply, T, p, and E are kept constant), in the equilibrium state,

dd* = 0. (3.220)
5—0427
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From (3.219) it follows that
dD*
( 1 ) = —U, (3.221)
0 —
T Jpir, gt
oD* ,
( " ) =V, (3.222)
T /74yt yr
and
( "qg*) — W, (3.223)
T Jyr, pit

(4) Fil'xally,bif we transform Eq. (3.205) by employing (3.172) and
(3.215), we obtain
EW

(5=~ H )= L va($)-wa(E). o2

If we introduce the notation

R LA L8 (3.225)
or, which is the same,
pe= I8PV S (3.2254a)
then from (3.5a) we see that
I (3.226)

In terms of specific quantities these relations are, naturally, of the
following form:

g BB (3.225b)
and
e = (3.226a)

Using the new notation, we can write (3.224) in the following
form:

A= aU—Vva (4 —wa (). (3.227)

[t is clear that for a complex system with U, p/T, and &/T con-
stant, in the equilibrium state,

ar* = 0. (3.228)
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Equation (3.227) implies that

(%)p/T, &/T =_71"~ ’ (3.229)
( 2 ) =7, (3.230)
T Ju,ur
and
( jalt ) — —W. (3.231)
aT U, /T

3.3.7. As pointed out above, the functions /' and @ are not used
in thermodynamic calculations (except for some problems involving
irreversible processes). They were the first characteristic functions
that Massieu introduced into thermodynamics. Planck in his works

often used the function ®. The modern, so to say, characteristic
functions (enthalpy and the isochoric-isothermal and isobaric-
isothermal potentials) came into use considerably later than the
Massieu-Planck functions.

The characteristic functions U, H, F, and ® have an important
advantage over the Massieu-Planck characteristic functions—they
are thermodynamic potentials. We recall (see Sec. 3.1.3) that for
a quantity to be a thermodynamic potential the work L* that a com-
plex system can perform under given conditions of coupling with
the surrounding medium is equal to the decrease in the corresponding
characteristic function (see Eqs. (3.18a) through (3.21a)). The Massieu-
Planck functions do not possess these properties. This can easily
be shown.

From Eq. (1.29)

T dS = dU + p dV + dL*

it follows that for a complex systemm with U and V constant,

dL* = T dS. (3.232)
Next, we write (1.29) in the following form:
1 1 a2 a9
dS = 4 dU + £~ dV + o~ dL*. (3.233)

Taking into account (3.165) and (3.168), we transform this equa-
tion to

dF = —Ud( )+ 5 av+ -dL, (3.234)

whence for a complex isochoric-isothermal system
dL* = T dF. (3.235)

5§k
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In the system under consideration T is constant and, therefore,
if we use (3.169), we find from (3.235) that

dL* = — dF. (3.235a)

This result is obvious a priori, since we are speaking of the same
isochoric-isothermal system for which we earlier obtained rela-
tion (3.20a).

If we combine (3.165) and (3.172), we can transform Eq. (3.233) to

d (S——;.L——p%,-) —Ud () —Va(E)+-dL*. (3.236)
or, with due regard for (3.175),
= —Ud(4)—Vva(+) +—-dL*, (3.237)

We see that for a complex isobaric-isothermal system,
dL* = T dO. (3.238)

Since in this system T is kept constant, it is evident from this
relation and (3.176) that

dL* = — dO, (3.238a)
which is an obvious result for isobaric-isothermal systems (see
(3.21a))

Fmally, if we use only (3.172) to transform (3.233), we obtain
1
d (S—T) = dU—Vd (5 )+ dL*. (3.239)
i.e. with due regard for (3.186),
1 p 1
dl =—dU —Vd (T)—[-TdL*. (3.240)

Hence, it follows that for a complex system with U and p/T constant,
dL* = T dl. (3.241)

From Egs. (3.232), (3.235), (3.238), and (3.241) which we have
just derived it can be seen that the work L* is not done at the expense
of the corresponding characteristic function (as it was in the cases of
the main characteristic functions discussed in Sec. 3.1; see

Egs. (3.18a)-(3.214)).
Consequently, the Massieu-Planck functions S, F (5, and I do
not, indeed, possess the properties of a thermodynamic potential.®

./___ .
6 The reader must not be misled by relations (3. 2353) and (3.238a): the

characteristic function for the vanables 1/T and Vis F and not F, while that
for the variables 1/T and p/T is @ and not .
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We will mention the Massicu-Planck functions once more ip

Sec. 9.2. )
3.3.8. Concerning the Massieu-Planck functions it is in place to
malke the following remark.

Equation (3.199)
1 ~
dS = 4 dU £ dV + ¢ dG,

combined with Legendre transformations (3.165), (3.172), and

¢ dG = d (¢G) — Gd ¢, (3.242)
and with due regard for (3.191), which states that
G = O,
can be written thus:
U 1 , / pV P - ~
as=d(g )= ()+d(45)-va(f)+db-Gdp.
(3.243)
Whence, using (3.175), we obtain
Ud(%)+Vd(%)-—Gd$=O. (3.244)

This is simply another way of presenting the Gibbs-Duhem equation
(3.157) discussed above.
3.3.9. To conclude the discussion of the Massieu-Planck characteris-
tic functions we will make one more, purely pedagogical, remark.
The main characteristic functions U, H, F, and @ were introduced
by applying Legendre transformations to Eq. (3.25)

dU = T dS — pdV

for four variables: V and S, p and S, V and T, and p and T. For
obvious reasons there is no point in discussing two more possible
pairs, V and p, and 7 and S.

The method of introducing the Massieu-Planck functions was,
generally, the same--we applied Legendre transformations to

Eq. (3.159)
s ='—; U —-£- dv

for four pairs of variables: V and U, p/T and U, V and 1/T, and p/T
and 1/T. There is no point in discussing pairs V and p/T, and 1/T
and U. (Sometimes in thermodynamics courses Eq. (3.25) is called
the combined equation of the first and second laws of thermodynamics
in terms of energy and Eq. (3.159) the combined equation in
terms of entropy.) The same classification can be introduced for
Eqs. (3.62) and (3.205) for complex systems.



70  The Differential Equations of Thermodynamics

3.4 The Grand Potential al_ld the Kramers Function

3.4.1. Let us consider the combined equation of the first and second

laws of thermodynamics for systems with a variable amount of
substance (3.144):

TdS =dU 4+ pdV — ¢ dG.
If to this equation we apply Legendre transformations (3.7)
TdS =d(TS) — SdT
and (3.154)
¢ dG = d (9G) — G d,

and bear in mind that in accordance with (3.42)

® — G,
we obtain
d(U—-TS —®) = —SdT — pdV — G dg. (3.245)
It is clear that for a simple system with 7', V, and ¢ constant,
d(U—-TS —®) =0. (3.246)
Let us introduce the notation
r=0v-—-785 — ®. (3.247)
If we take (3.9) and (3.13) into account, we have
'=F — Q, (3.248)
or, which is the same,
I = —pV, (3.249)

The function T' is usually called the grand potential.
By virtue of (3.247) we can write (3.245) as

dI'= —SdT — p dV — G dg. (3.250)
It follows then that
ar
O_T_)V' ,=—5 (3.251)
ar
(W)T.cpz — b (3.292)
and
ar .
(_aa)v. _=—G. (3.253)

From the above relations it is clear that if the grand potential is
expressed in terms of V, T, and ¢, it is a characteristic function.
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Indeed, the values of T' and V are given, p is determined from
(3.252); if @ is known, having found G from (3.253) we can find @
and by the value of S known from (3.251) and the values of p, V, T,
and ¢ we can determine U; and so on.

3.4.2. The concept of the grand polential for complex systems is
introduced in a similar manuer. From the combined equation of the
first and second laws of thermodynamics for a complex system with
a variable amount of substance, (3.145)

T'dS =dU + pdV + EdW — o¢* dG,

using Legendre transformations (3.7) and

¢* dG = d (¢*G) — G dg* (3.154a)
and taking into account (3.42a), we oblain
dI'* = — §dT — pdV — £ dW — G dg¢*, (3.254)
where
TI*=U—-TS§ — b*, (3.255)
or, which is the same,
' = F — Q* (3.256)
and
I'* = — pV — EW. (3.257)

From (3.254) it is clear that for a complex system in which T, V,
W, and @* are constant, in a state of equilibrium,

dr* = 0. (3.258)

The function I'* is the grand potential for a complex system.
From (3.254) we see that

( ZIV* )T, w,opk D (3.259)

( W )T,V,¢*: —& (3.260)

(aal}* )V W gr TS (3.261)
and

(_ZEP—:)T v.ow o G. (3.262)

3.4.3. The characteristic function I'* has the properties of a ther-
modynamic potential. Indeed, if we take into account Eq. (1.7)
we can write (3.145) as ’

TdS =dU + pdV + dL* — ¢* dG, (3.263)
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and using (3.7) and (3.154a), we can transform it to
dl'* = — SdT — pdV — G do* — dL*. (3.264)

Hence, it follows that for a complex thermodynamic system in
which T, V, and ¢* are constant we have

dL* = — dT*, (3.265)

i.e. under given conditions of interaction with the surrounding
medium a system of this type performs work L* at the expense of
the characteristic function I'*.

It is interesting to note that while in the case of the common ther-
modynamic potentials (H and @), under appropriate conditions of
coupling with the surroundings a complex system performs work at
the expense of the corresponding potential of a simple system:
dL* = — dH and dL* = — d® (this is seen from Egs. (3.19a) and
(3.21a), in the given case the work L* is performed at the expense
not of the “simple” grand potential I' but of the complex grand poten-
tial I'*. This is not surprising since in Sec. 3.1.3 for a complex sys-
tem with a constant amount of substance we used Eq. (1.29), while
here we use Eq. (3.145) containing besides L* the quantity ¢*, due
to which in (3.264) and (3.265) there appears I'* instead of I'. At the
same time it is obvious from (3.157) that I' is not a thermodynamic
potential (since for the complex system under consideration dL* 5%
= dI).

3.4.4. The grand potential is widely used in statistical thermody-
namics for calculating the grand canonical ensemble. In classical
thermodynamics the grand potential is not used.

3.4.5. If we write Eq. (3.144) in the form

_._4; P gy -2
dS = — dU + - d} 7 4G (3.266)
and employ Legendre transformations (3.169)
1 - U 1\
T dU=d (7 )—Ud (),
and
P _ 4G P\
2-dG=d (_T—)—Gd(T}, (3.267)
then, using (3.42), we can write (3.266) in the following form:
U O® 1 P ¢
d (S—T+—T—)—_——Ud(T)+TdV+Gd(—T—). (3.268)

It is clear that for a simple system in which 7, V, and ¢/T are con-
stant (and since 7' is constant, ¢ is constant, too),

d (S——%—%%):O. (3.269)
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We introduce the notation
~ U, o

I'=8§——+—. (3.270)
If we combine (3.247) and this relation, we see that
= —T/T. (3.271)

The quantity T is usually called the Kramers function.
Bearing in mind (3.270), we can write Eq. (3.268) in the fol-
lowing form:

T 1 P ¢
dP_—Ud(7)+—FdV+Gd(T), (3.272)
or, using (3.197),
il = —Ud (%) +-Fav—cdeg. (3.273)
From (3.272) it is evident that
ar -
= — .274)
(ai) U, (3.274)
T /v, ¢t
0? __P
(_O_V)i/T, o T ° (3.279)
and
( o ) —G. (3.276)
T Jur v

From the above relations it follows that the Kramers function is
a characteristic function if expressed in terms of V, 1/T, and o¢/T.

In the same way we can introduce the Kramers function for com-
plex systems. If we write Eq. (3.149) in the form

! P E w_ ¢F -
dS = — dU + - dV + - dW — =~ dG (3.277)
and apply Legendre transformations (3.165) and
& iG=d ( . ) Gd( ), (3.278)
using (3.42a), we ﬁnd from (3.277) that
af* = ~vd () +Lav +4 S AW + Gd (%), ©.219)
or, bearing in mind (3.218a)
dT* — —Ud (——;—)+%dV+—§—dW—G do*.  (3.280)
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Here
Fr=s—2 +5-, (3.281)
or, according to (3.220),
I'* = — I*/T. (3.282)

It is obvious thal for a complex system with 7, V, W, and ¢*
constant, in the equilibrium state,

dl* = 0. (3.283)
From (3.279) we secc that
( m‘: ) = —U, (3.284)
O—T_ vV, W, ¢¥/T
ar* p )
(\ v )1/7', w,ogxr T °? (3.2895)
aT* g
(. ow )1/7‘, v, ¢z T ? (3.286)
and
( e ) =G. (3.287)
a (p
T 7y, v, w

We can easily show that the Kramers function is not a thermodynam-
ic potential. Substituting EdW in Eq. (3.279) with the help of (1.7),
we get

dT* = —Ud (%) +L-dv 4 Gd ("%) +2-dL*. (3.288)

It is obvious that for the system under consideration, with V, T,
and ¢* constant,

dL* = T dl*. (3.289)

Since in this systemm I is constant, using (3.282) we can write
(3.289) in the following form:

dL* = — dI'*, (3.289a)
which is obvious a priori.
We see that the work L¥ is performed not at the expense of the

corresponding function f*, therefore, I'* does not have the proper-
ties of a thermodynamic potential. [t is obvious that the Kramers
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function I is related to the grand potential I' in the same manner as
the Massieu-Planck functions are related (o the main characteristic
functions (U, H, F, and ®). The Kramers funclion is not widely
applied in thermodynamic calculations.

3.5 Other Characteristic Functions

3.5.1. As we saw in Sec. 3.4.1, the grand potential I' was intro-
duced by using in Eq. (3.144)

TdS =dU + pdV — ¢ dG

Legendre transformations (3.7) for the quantity 7 dS and (3.154) for
¢ dG. Earlier, in Sec. 3.2.9, we saw that if we apply the Legendre
transformation (3.4) together with (3.7) and (3.154) to p dV, then
Eq. (3.144) is transformed into the Gibbs-Duhem equation.

Thus. in the first case, in Eq. (3.144) we used the transformation
for the quantity 7 dS in addition to transformation (3.154) for
¢ dG, while in the second case we used transformations both for
T dS and pdV. In both cases, when considering Eq. (3.144) the
characteristic feature is the application of transformation (3.154)
to ¢ dG.

We can also easily see that if we must use transformation (3.154),
there are two more ways in which we can handle Eq. (3.144): (1) using
neither transformation (3.7) nor transformation (3.4), and (2)
using only transformation (3.4). Treating Eq. (3.144) along the
same lines results in two more interesting characteristic functions.

3.5.2. Let us perform the required transformations.

(1) If in Eq. (3.144)

T'dS =dU + pdV — ¢ dG
we substitute the quantity ¢ dG with the help of (3.154)
¢ dG = d (¢G) — G do
and take into account (3.42), we obtain
d(U—®D)=T4dS — pdV — G de. (3.290)

It is clear that for a simplesystem in which §, V, and ¢ are constant,
in the equilibrium state,

d (U — &d) =0. (3.291)
Let us introduce the notation
IH=U—O, (3.292)

This combined with (3.13) yields
II=78§—pV. (3.293)
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Using this notation, we can write (3.290) in the following form:
dll = T dS — p dV — G dg. (3.294)

Hence it is clear that

(g—g)v : (3.295)
ZH )s o= —P (3.296)

and
(%)S' =—C (3.297)

From these relations it follows that Il is a characteristic function
if expressed in terms of S, V, and ¢.

In the same way a similar characteristic function can be introduced
for a complex system: transforming Eq. (3.145) with the help of
(3.154a), we obtain

dll* = T dS — pdV — EdW — G de*, (3.298)
where
I1* = U — O*, (3.299)
or, which is the same,
nm* =78 — pvV — EW. (3.300)

From (3.298) it follows that for a complex system in which S, V,
W, and ¢* are constant, in the equilibrium state,

di* = 0. (3.301)
From (3.298) it follows that

olI*
( S )V,TV,rp*::T’ (3.302)

oIl*
( v )s, W, ook — D (3.303)

oll*
( oW )s, V.oE — &, (3.304)

and

oll* - : _
( acp* )S' v, 1V_ —G. (3300)

It is easy to show that the characleristic function IT* is a thermio-
dynamic potential: if we substitule in (3.298) the quantity & dW
using (1.7), we obtain

dll* = T dS — p AV — G do* — dL*. (3.306)
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Hence, it is obvious that for acomplex thermodynamic system in which
S, V, and ¢* are constant

dL* = — dII*, (3.307)

i.e. under the given conditions of interaction with the surrounding
medium the work L* that such a system can perform is only at the
expense of the characteristic function II*. At the same time it is
obvious from (3.307) that II is not a thermodynamic potential
(since dL* = —dII).

Note that the functions II and II* considered here are uniquely
related to the functions I and /* introduced earlier in Sec. 3.3.
Indeed, comparing relations (3.186a) and (3.293), we see that

IN=TI, (3.308)
while comparing relations (3.225a) and (3.300) we see that
I* = 7T1I*. (3.309)

(2) If in (3.144) we substitute the quantity ¢ dG using (3.154)
and the quantity p dV using (3.4) and take into account (3.42), we
obtain

d(U+ pV — @) = TdS + Vdp — G dg. (3.310)

It is easy to see that for a simple system in which S, p, and ¢
are constant, in the equilibrium state,

d (U + pV — D) = 0. (3.311)
We introduce the notation
A=U + pV — O, (3.312)
or, using (3.13),
A=TS. (3.313)
Using this notation, we can write (3.310) in the form
dA =T 4dS 4+ Vdp — G dg. (3.314)
Hence, it is obvious that
oA
(_(F/p' == (3.315)
aA \
(7’7)5' . v, (3.316)
and
oA -
(—a(?)s’ ,=—G. (3.317)

Thus, A is a characteristic function if expressed in terms of S, p,
and .
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For a complex system the situation is the same: if we transform
Eq. (3.145) using (3.4), (3:48), and (3.154a), we find that
d(U + pV + EW—0*)=TdS + Vdp + WdE—G do*. (3.318)
Combining this with (3.59), we sec that
U4 pV +EW—O* =TS (3.319)

and, hence, bearing in mind (3.313), we can write (3.318) in the
form

dA = T dS - Vdp + Wdt — G do*. (3.320)

It is clear that for a complex system in which S, p, g, and ¢* are
constant, in the equilibrium state,

dA = 0. (3.321)
From (3.320) it is obvious that
oA .
(F)p E,q*:]’ (3322)
oA .
(55 )s.c =" (3.323)
oA
(E)s,p.w*:W’ (3.324)
and
TN a
(._.a(P* )S,p'gz—G, (0325)

It is interesting to note that the characleristic function A is not
a thermodynamic potential. Indeed, if we substitute in Eq. (3.143)
the quantity § dW using (1.7), we can write (3.145) in the following
form:

TdS = dU 4 p dV — dL* — ¢* dG. (3.326)
Using Legendre transformations (3.4) and (3.154a), we obtain
d(U 4+ pV — O*) =T dS + Vdp — G do* — dL*. (3.327)

Hence it is clear that for a complex thermodynamic system in which
S, p, and ¢* arc constant

dl* = — d (U 4+ pV — OD#). (3.328)
But from (3.59) it is obvious that
U+ pV — D =TS — EW, (3.329)

or, using (3.313),
U+ pV — O = A — EW. (3.330)
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If we combine this relation with Eq. (3.328), we find that
' dL* = — dA + d (EW). (3.331)

Hence it is clear that under the given conditions of interaction
with the surroundings, the work L* performed by a complex system
is not done at the expense of the characteristic function A. Therefore,
the function A does not have the properties of a thermodynamic po-
tential. As seen from (3.331), the function A — EW =T8§ — EW
is a thermodynamic potential for this system; it is also a character-
istic function.

This can casily be shown in the following way. If to transform
Eq. (3.145) we use only (3.4) and (3.154a) and we do not substitute
EWW by means of (3.48), instead of (3.318) we have

d(U+ pV —@*)=TdS + Vdp — §EdW — G do*, (3.332)
or, using (3.329),
d(TS —EW)=TdS + Vdp — EdW — G dg*. (3.333)

Whence, it is clear that for a system in which §, p, W, and ¢*
are constant,® in the equilibrium state,

d(TS — g§wW) = 0. (3.334)
If we introduce the notation
= =TS — tW, (3.335)
we can write (3.333) in the form
dZ = T dS + Vdp — & dW — G do*. (3.336)
From this it follows that
oz
(.B—S.)p,TV,(p*=T, (3.337)
o=
(—p)s, v =V (3.333)
9=
(—aW)S’ b=t (3.339)
and
o=
(W )S =0 (3.340)

The above relations show that the function & is indeed a character-
istic function if expressed in terms of S, p, W, and ¢*. Obviously,

6 The peculiarity of these conditions of interaction between the system and
its surroundings consists in that along with the conditions that S and ¢* be
kept constant, in relation to one type of work (the work of expansion), the value
of the generalized force, pressure p, remains constant, while in relation to another
type of work the value of the generalized coordinate W remains constant.
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if we substitute & dW using (1.7) and (3.329) in Eq. (3.336), we can
transform the latter equation to

dE = T dS + Vdp — G do* — dL*. (3.341)

It is clear that for a thermodynamic system in which §, p, and ¢*
are constant, in the equilibrium state,

dL* = — dE, (3.342)
i.e. the system can perform work, L*, at the expense of the character-
istic function 2. Consequently, the function = is a thermodynamic
potential. Naturally, (3.342) is equivalent to (3.331).
3.5.3. Let us now consider Eq. (3.144) written in the form (3.260):
4 Pay_ %
dS_TdU+TdV 7 dG.
If we use the Legendre transformation (3.267)

i (%) -ca($)

and Eq. (3.42), we can write Eq. (3.266) in the following form:

_ 1 p . P @
dS = dU+-4-dv+6d(F)—d (7,) (3.343)
or, using (3.197),
1 D ~ 1))
dS =—-dU +%-av —Gdg—d (7). (3.344)

This equation can be transformed with the help of (3.165)
1 U 1
T =d(5)—Ud ()
and (3.172)

%dV:d(”—j‘,’)~Vd(-;;).

There are four ways in which we can transform Eq. (3.343): using
both (3.165) and (3.172), using only (3.165), using only (3.172), and
using neither (3.165) nor (3.172).

It is easy to show that the first case results in the Gibbs-Duhem
equation in the form (3.344).

The second yields Eq. (3.268), which we already know (on the
basis of the equation that introduced the Kramers function (3.270)).

If we consider the two remaining cases, we obtain interesting
results.
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(1) Substituting in (3.343) the quantity (p/T) dV by means of the
Legendre transformation (3.172), we obtain

a _"T—V+'—‘7‘3)=—d0 vd (4 )+Gd( ). (3.345)

We see that for a simple system in which U, p/T, and ¢/T are con-
stant, in the equilibrium state,

pV O _
d(S—L—+7)=0. (3.346)
Taking into account (3.13), we see that
o U
S—— =7 (3.347)
We introduce the notation
o 14 @
U=8—+t—++. (3.348)
From (3.347) if follows that
U= UIT. (3.349)

Let us now write (3.345) in the form
~ "
AU =—dU — Vd( )+Gd (?) (3.350)

whence the obvious relations

U ! 3.351
(aU )P/T.QDIT——T_—’ ( )
( - ) = —V, (3.352)
—T— U, /T
and
( ad ) =G, (3.353)
59
T Ju,pt

which show that the function U is a characteristic function if expres-
sed in terms of U, p/T, and ¢/T.
In the same way, for a complex system Eq. (3.277)

1 P 3 Q*
dS:TdU—}— —T—dV—l—T dW—TdG,

6—0427
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which we combine with (3.278) and (3.42a) and write as
__i_ p g o* ! (L*_ =
dS=-aU+2av+Eaw—a () +6d (%), 3354
can be transformed, via (3.172) and (3.215), to

aU* =1 aU—va (L) —wa (£)+6d(%). @355

T \
Here
Or=§—2L - 4+ 20 (3.356)

From (3.59) we find that

~

U* = U. (3.357)

We see that for a complex system in which U, p/T, &/T. and ¢*/T
are constant, in the equilibrium state,

dU = 0. (3.358)
From (3.355) !it is obvious that

oU 1 _
(=7 )m’ T (3.359)
( = ) — T, (3.360)
T Ju, yr, et
( & ) - —W, (3.361)
a_.
T Ju, p/T, o¥/T
and
( aU*) —G. (3.362)
) 2*
T /Ju,prT,yr

It is easy to see that the function U does not have the propertieg
of a thermodynamic potential. Indeed, if we write (3.215), bearins
in mind (1.7), in the form

—Wd(%):—;—dL*—d(—-ETE), (3.363)

then, using this relation, we can transform (3.355) to

a0 = 4 dU —vd (%) +6d (&) —a () +arx.  (3.364)
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It is clear that for a system in which U, p/T, and ¢*/T are constant,

dL* =T [dU+d (—T—)], (3.365)
or, in accordance with (3.349),
arr=rd I (3.366)

Therefore, the work L* is not done at the expense of the character-

istic function [7; hence, U is not a thermodynamic potential.

(2) Let us now consider Eq. (3.343) without applying Legendre
transformations (3.165) and (3.172). Equation (3.343) can be writ-
ten thus:

A(S+4)=FdU+Lavi6a(E). (3.367)

We see that for a simple system in which U, V, and ¢/T are constant,
in the equilibrium state,

d (S + @®/T) = 0. (3.368)
From (3.15) it follows that
S + ®/T = HIT. (3.369)
Let us introduce the notation
H=S + ®/T. (3.370)
Obviously,
H = HIT. (3.371)

Using this notation, we can write (3.367) in the form

o 1 J4 )
A = dU +$-dv + Gd(T), (3.372)
whence
oH 1
(Dot 0270
il =2 p
('ﬁf—)u, or L (5.574)
and
( oH ) —G. (3.375)
-3
T Ju,v

6%
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From these relations il follows that H is a characteristic function i
expressc(l in terms of U, V, and ¢/T. |
For a complex system we can write Eq. (3.354) in the following

way:

dﬁ*=';—dU+%dV+—§,—dW—{—Gd (%) (3.376)
where 5
H* = § + ®*/T. (3.377)
Using (3.60), we find that
H* = [1%/T. (3.378)

From (3.376) it follows that for a complex system in which U, V,
W, and ¢*/T are constant, in the equilibrium state,

dH* = 0. (3.379)
From (3.376) it also follows that

( 0H* 1
\ " aU )V w,ex7 T (3.380)

of* .
( oV Juw, eyt T T (3.381)

oI* E
(7)o v, r=" (3.382)

and

( . ) (3.383)

0= uv,v,w=0.

Hence, the function II* is a characteristic function if expressed in
terms of U, V, W, and o¢*/T.
Next, using (1.7), we can write Eq. (3.376) in the form

AH* = dU + L av + Ga (I} +dLx.  (3.384)

We see that for a system in which U, V, and ¢*/7 are constant,
dL* = T dH*, (3.385)

i.e. the work L* is not done at the expense of the characteristic

function H* and, hence, [* is not a thermodynamic potential.
The characteristic functions discussed in this section are interest-
ing, first of all, from the pedagogical point of view, since they
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constitute the group of characteristic functions for thermodynamic
systems with variable amount of substance.

3.9.4. In conclusion let us consider one more problem. We have
shown above that if we substitute in Eq. (3.144) the quantities
T 48, pdV, &£ dW, and ¢* dG using Legendre transformations (3.7),
(3.4), (3.48), and (3.154a), we obtain the Gibbs-Duliem equation for
complex systems (3.158). Similarly, if we substitute in Eq. (3.277)
the quantities (1/T) dU, (p/T) dV, (¢/T) dW, and (¢*/T) dG using
Legendre transformations (3.165), (3.172). (3.215), and (3.304),
we obtain the Gibbs-Duhem equation for complex systems (3.244).
These Gibbs-Duhem equations show that for the group of variab-
les T, p, £ and ¢* and, likewise, for the group of variables 1/T, p/T,
E/T, and @*/T there are no characteristic functions. However, it is
interesting to discuss what amount of work L* can be performed by
a complex system under the following conditions of interaction with
the surroundings: T, p, and ¢* are constant; and 1/T, p/T, and @*/T
are constant.

If we use (1.7) and write Eq. (3.145) in the form

TdS = dU + pdV — ¢* dG -~ dL*, (3.386)

then using Legendre transformations (3.4), (3.7), and (3.154a), we
can write this equation in the following form:

d(TS — U — pV + ®*) = SdT — Vdp + G d¢* + dL*, (3.387)
or, with due regard for (3.59),
d(EW)= SdT — Vdp + G de* + dL*. (3.388)

Hence, we see that for a complex system in which T, p, and ¢*
are constant,

dL* = d (EW). (3.389)

Similarly, if we take into account (1.7) and write (3.277) in the
form

dS:—dU+ d dV——dG—|— . (3.390)

using Legendre transformatlons (3.165), (3.‘1/2), and (3.278), we can
reduce (3.390) to

a(s— -5 **)_—_—Ud(%)

—vd(4)+6d (4 )—}-%dL* (3.391)

or, with due regard for (3.59),

2(5-) = —vd(5)—va (L) +ad (Z-) ++ar*. (3.392)
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Therefore, for a complex system in which 1/T, p/T, and ¢*/T are
constant,

aL* = Td (3-) (3.393)
or, since 7 is constant,
dL* = d (§W), (3.394)

which coincides with (3.389). This is obvious a priori, since the
conditions of interaction of the two systems with the surroundings
are the same.

Table 3.1 gives the characteristic functions discussed in this
chapter.

TABLE 3.1
Simple systems ' Complex systems
Variables Characteristic Variables Characteristic
Constant amount of substance
S,V U S, V, W U
S, p H=U~+pV S, p, § H*=U+pV 4 EW
T,V F=U-—=TS T, V, W F=U-TS
T, p O=U-+pV—-7S T,p, ¢ o¥=U-+}pV 4+
+EW—-TS
u,v S u, v, w S
U, p/T I=(TS—pV)/T U, piT, ET I*=(TS§—pV
N —EW)IT
1T,V F=—F|T 1yr, v, w F=—F/T
1/T, p/T Q= —Q/T 1/T, p/T, /T O=—Q*/T
Variable ammount of substance
S, V, o =TS —pV S, VvV, W, o* H*=§TS—pV
—tW

S, p, @ A=TS S, p, & o* A=TS
T, V, o '=—pV T, Vv, w, o* 't = —pV—-EW
T, . ¢ N T, p, &, o* N
U, v, o/T H=H|T u, v, w, o¥/T H* = H*T
YT, v, /T F=—r/1 1T, V, W, ¢*/T T#*=—T%/T

1/T, p/T, @/T 1T, p/T,EIT, p*/T
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Interaction between complex thermodynamic system
and surroundings

Char-
acter-
istic
func-

tion

‘Work of system in
equilibrium

Constant amount of substance

S =const, V¥V =const U dL*=—4U
S =const, p=const H dL*=—dH
T =const, V =const F dL¥ = —dF
T =const, p=const @ dL¥*= —4dd
U =const, V =const S dL*=T 4S$
U =const, p/T =const I dL*=T 4dI
1/T =const, V =const F  dL*= —dF
1/T =const, p/T =const O dL¥=—4d0
Variable amount of substance
S =const, V =const, ¢* =const I dL*= —dII*
S =const, p=-const, ¢* =const A dL¥*=—d(TS—EW)
T =const, V =const, ¢* =const '  dL*=—dqdI*
T =const, p=const, ¢* =const dL*=d (EW)
U =const, V =const, ¢*/T = const H dL*=TdH*
U =const, p/T =const, ¢*/T =const U dL*=Td((U+EW)/T
1/T =const, V =const, ¢*/T = const r dL* = —dI'*
1/T =const, p/T =const, ¢*/T =const dL*=d (tW)

The relations defining the work L* that a specific system can
perform in the equilibrium state are presented in Table 3.2. These
are given for different conditions of interaction between the complex
thermodynamic system and its surroundings. We recall that if the
the expense of a characteristic function N
this function is a thermodynamic potential;

work L* is done at
(i.e. dL* = —dN),

otherwise it is not.



4 The Maxwell Equations

4.1 Simple Systems

4.1.1. The most important tools of thermodynamics are the equa-
tions derived by J. C. Maxwell. In what follows we will widely use

these equations.
The Maxwell equations can be obtained in the following way.

The reader will recall (see Chap. 2) that if a differential of a function
z = f (z, y) is written in form (2.63)

dz = M dx + N dy

and it is known that the differential of this function is total, the
relation (2.30) holds:
oM oN
( dy )x_( oz )y'

(1) If we compare Eq. (3.25a)
du = T ds — pdv

with (2.63), we find that M =T, N= —p, z =5, and y = v.
Hence, from (2.30) we obtain

(9T — _ (2P

\ av )s_ ( as ).,' (4.1)

(2) If we compare Eq. (3.28a)
dh = T ds + vdp

with (2.63), we see that M =T, N=v, z = s, and y = p. With
this in mind, from (2.30) we find that

(%)= (%), (4.2
(3) If we compare (3.31a)
df = — pdv — sdT
with (2.63), we find that M = — p, N = —5s, 2 =v, and y =T.

Hence, from (2.30) we obtain

(57 )= (55 ) (4.9
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(4) Finally, if we compare (3.34a)

dp=vdp —sdT
with (2.63), we find that M =v, N = —s, 2 =p, and y = 7.
From (2.30) it follows that
v (85
(77 ), == (5 ) (4.4)

Relations (4.1)-(4.4) are called the Maxwell equations.
4.1.2. From (2.1) it is obvious that Egs. (4.1) through (4.4) may
be written in “inverted” form:

(). == (%), (412)

(7). = (%), (4.2a)

(%), = (5 ) (4.32)
and

(45), == (%), (et

4.1.3. Equations (4.1) through (4.4a) are written for the specific
(per unit mass) values, v and s, but the same can be derived for the
total quantities, Vand S, relating to the entire thermodynamic system:

(z_g)sz—(%>v’ (4.1b)
(5 )= (5, (4:20)
(—%‘J—)V—:(g_S)T’ (4.3b)

(Z_g)pz o (%)T; (4.4D)

the inverse relations will also have this form.

4.1.4. From what we have said it follows that the Maxwell equa-
tions can be considered a particular case of the general relation (2.30)
given for thermodynamic quantities.

4.1.5 Naturally, we may ask what relation we will obtain Iif,
together with Eqgs. (3.25a), (3.28a), (3.31a), and (3.34a), we consider
Eq. (1.27a). Let us write this equation in the form

1 [
ds == du+ 4 dv (4.5)
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and compare it with (2.63). We find that M = 1/T', N = p/T, z = u,
and y = v. Substituting these values into (2.30), we get

(%)= (@)—r (%), (4.6)
Since in accordance with (2.67)
(%%)uz o (-z—z)v (.g_:)T (47)
and in accordance with (2.6)
(%).=(3). (&), (&8
we obtain from (4.7)
(5)=" (37 ),—»- “9)

This relation gives the variation in the internal energy with the
specific volume on an isotherm. It is used in various thermodynamic
calculations, but the Maxwell equations are far more significant
and universal; moreover, relation (4.9) may be easily derived from
one of the Maxwell equations (see Sec. 5.1).

4.1.6. Sometimes the following method of deriving the Maxwell
equations is given. Let us denote by = and y two variables that imply
any pair from the four quantities p, v, 7, and s. From Eq. (3.25a)

du = T ds — pdv
it follows that

(32),=7 (5),— 7 (=), (4.10)
and
(5=).=7 (5 ).~ (5. (4.11)

Differentiating the first of these relations with respect to y with =
constant, and the second with respect to x with y constant, we ob-
tain, respectively,

Z5m (). (2), 75 (). (3),-rily w0

and

o (D), ()47 5 (), (), p it
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Equating the right-hand sides of these relations we obtain

() (3) = (F). (5),= (%), (5 ).— (%), (&),
(4.14)

If we substitute p, v, T, and s for z and y, we see that four vari-
ants of such a substitution are possible:

(1)I=U,y=3; (3)x=v,y=T;
@ z=p, y=s 4 z=p,y=T

(since Eq. (4.14) is symmetric with respect to z and y, substituting
z=v,y=sforr= s,y = v, and so on does not yield a new result).
Substituting £ = v and y = s into (4.14), we obtain

(5 ). (55) = (). ()= (%), (%)~ (%), ().
(4.15)

Since, obviously, (ds/6v); = 0 and (dv/ds), = 0 but (dv/dv), = 1 and
(0s/ds), = 1, from (4.15) it follows that

ap aT
(). =—(%).

which is the Maxwell equation (4.1).

Similarly, the second, third, and fourth variants of the substitution
yield, respectively, the Maxwell equations (4.2), (4.3), and (4.4).

This method of deriving the Maxwell equations is, perhaps, more
elegant than the one considered in Sec. 4.1.1, but the latter is
clearer.

4.2 Complex Systems

4.21. If a thermodynamic system performs work other than
work of expansion, the Maxwell equations are formulated in the
following way.

(1) From the combined equation of the first and second laws of
thermodynamics for such systems, (1.30a), it follows that (see
Eq. (3.62a))

du = T ds — pdv — Edw.
We note that E is a generalized force (save for pressure p) and w is

a generalized coordinate (save for specific volume v).
For the case with v constant we obtain

du = T ds — Edw. (4.16)
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With the aid of the method discussed in Sec. 4.1.1 and Eq. (2.30)
we find that

(%)s,v:—(%)w.v' (4-17)

Similarly, for the case with w constant we find from (3.62a) and

(2.30) that
(). == (%), (448)

(2) Equation (3.66a)
dh* = T ds + vdp + wdE,

where 2* is the enthalpy of a complex system defined by rela-
tion (1.15a)

h* =u + pv + Ew,

for the case with p constant can be written thus:

dh* = T ds + wdE. (4.19)
In accordance with (2.30) we find from this relation that
oy (o
(_6?)3,;0_( as )g,p' (420)
Similarly, for the case with § constant we find from (3.66a) and
(2.30) that
oT av
(7)o = (5 ). (4.21)
(3) Equation (3.70a)
df = — pdv — Edw — sdT,

where f is the free energy of a complex system defined by the general
relation (3.41), for the case with v constant is

djf = — &dw — sdT. (4.22)
In accordance with (2.30) we find from (4.22) that
17 __{ 0s
(-(3_T)w, v— (E)T v’ (423)

Similarly, for the case with w constant we find from (3.70a) and

(2.30) that
(57 ) o= (5 ), o (4.24)
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(4) Finally, Eq. (3.74a)
do* = vdp + wdf — sdT

for the case with p constant is written thus:

do* = wdf — sdT. (4.25)
Hence, in accordance with (2.30), we have
ow ds
(7): v == (F)r.» (4.20)
Similarly, for the case with & constant we find from (3.74a) and
(2.30) that
av ds
(57 )s = (55 )a. o (427)

These are the Maxwell equations for complex systems. We see that
Egs. (4.18), (4.21), (4.24), and (4.27) are similar to Egs. (4.1)
through (4.4), the only difference being that the partial derivatives
in (4.18) and (4.24) are calculated with w kept constant, and those
in (4.21) and (4.27) with & constant.

4.2.2. Naturally, the Maxwell equations can also be written in
an inverted form:

(%), . == (5)0. o (4.17a)
(), o= —(2). o (4.182)
(5). = (5 )s (4.20a)
(7). .= (%), (4.21a)
(55 )0 o= (5 ), o (4.23a)
(% )0, o= %)z, (4.24)
(45)e,="{%)., (4.26a)
(aa_i)p. £ (%SB)T, e (4.27a)

4.2.3. The Maxwell equations for complex systems obtained in
this section, just as Egs. (4.1b) through (4.4b), can be written for
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the total values of V, W, and S which refer to the entire thermody-
namic system: '

(%)s V=—(g_§‘)w'va (4.17b)
(%:{”—)s wo (%)V W (4.18b)
E—%—;s pj(%)g'p, (4.20b)
—6? s g—(ﬁ)p, £ (4211))
((%E‘_)W v (g—fV)T v’ (4.23b)
(g—;)v' wo (‘%%)T’ w? (4.24D)
(%VTK)E, p (‘%‘%)T o’ (4.26b)
(z_g)p. S (%)T. 3 (4.27b)
and, similarly,

(-%I;V—)s v (%)W v? (4.17¢c)
(27)s w=— (%), o (4.18¢)
()5, =), . (4.20¢)
(%ITJ-)S' §=(g_f’)p, E, (4210)
(%)w V:(%VSK)T v’ (4.23¢)
(%)V, W (%)T. w’ (4.24c¢)
(3_5V>§ e (%—)T, o’ (4.26¢)
(%)p. g (%)T 3 (4.27¢)

4.3 Systems With Variable Amounts of Substance

4.3.14. In Sec. 3.2 we showed that for systems with a variable
amount of substance the combined equation of the first and second laws
of thermodynamics is written for a simple system in the form (3.144)

T dS = dU + pdV — o¢dG,
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and for a complex system in the form (3.145)
TdS = dU + pdV + 8@W — ¢*dG.

By the same methods that we applied in Sees. 4.1 and 4.2 to
Egs. (1.27a) and (1.30a), from Eqgs. (3.144) and (3.145) we can obtain
the Maxwell equations for systems with a variable amount of sub-
stance.

4.3.2. We write Eq. (3.144) in the form (3.146)
dU = T dS — pdV + odG.

Combining this relation with (2.30); we see that for V constant

(%%)s. v (Z_f?p)a, v (4.28)
and for S constant
(%)V, s:—(-g_clg_)a, s (4.29)

If we employ (3.4) to write (3.146) in the form (3.147)
dH = T dS + V dp + ¢dG,

then, combining this with (2.30), we see that for p constant

oT __{ 09
(% )5 =55 ). (4.30)
and for § constant
A _{ 09
( 0G )p,S—( op )G.s‘ (4.31)
Next, (4.28) together with (3.7) yields (3.148)
dF = — SdT — pdV + qdG,
and if we employ (2.30), we obtain for V constant
aS _{ 09
_( G )T,V—( T )G.V (4.32)
and for 7T constant
op {109
_( G )V.T——( av )G,T’ (4.33)
Finally, if we combine (4.28) with (3.4) and (3.7), we obtain (3.149)
dd = — SdT + V dp -+ odG.

Hence, for p constant

_(Z_g)T,p:(_g%-)G,!p (4.34)
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and for 7 constant

(5 ), o= (s, (.39

Obviously, Egs. (4.28) through (4.35) are the Maxwell equations
for a simple system with a variable amount of substance.

4.3.3. The derivatives of ¢ on the right-hand sides of the Maxwell
equations for simple systems with a variable amount of substance
can be calculated in the following way.

(1) Since the derivative (8¢p/dS)¢ v is calculated with G kept con-
stant, it is clear that :

(g_g))a, VzGL( !Zf )v : (4.36)

From Eq. (3.43)
¢ =u-—1+ pv—Ts
we see that

()= (L) o ()= (L),

v

Since in accordance with (2.6)

(&), =(=F)(5).
and, as we will show in Sec. 5.3.1,

( =) =, (4.38)

as co

where ¢, is the isochoric heat capacity of the substance, combining
(3.26a) with (4.37) we obtain

(=) == ( )] (4:39)
Employing (4.36) and (4.39), we obtain from (4.28)
(5 )5, v="5e [ (5 ) —]- (4.40
(2) 1t is also obvious that
(5 ), 5= (5 ).- (44

From Eq. (3.43) it follows that

(&)= (5 ) e+ (5

)S_s (_@Z_) (4.42)

av
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If we take into account (3.27a) and bear in mind that according

to (2.6)
(%)== ). (=), (4.43)
we obtain
(=), = (=), [v—<(5).]. (4.44)
P
Combining Eq. (4.29) with (4.44) and (4.41), we have
(& )y.s=—5 (50 ).[o=s (&), )- (4.45)
(3) We can easily show that
()6 ,=7 (=55 ),- (4.46)
From Eq. (3.44)
¢ =h—Ts
it follows that
(50),= (=5 ),— 7= (%), (4.47)

Taking into account (3.29a) and the foliowing relation (see
Sec. 5.3.1) :

aT T
( as )p: cp ? (4.48)
from (4.47) we obtain
o . Ts
(& )p__ = (4.49)
Combining (4.49) and (4.46), from (4.30) we obtain
oT Ts
(__aG )S'pz_ ol (4.50)
(4) We can also show
ao _ ap
( ap )G.s_—( ap ) (4-51)
From (3.44) it follows that
9\ _(_on oT
( ap )s—( ap )S——s( ap )s’ (4.52)
or, with due regard for (3.30a),
( op .)s=v——s( T (4.53)

7—0427
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Combining this with (4.51), from (4.31) we find that

(%), s=v—s(2).- (4.54)

(5) Further, we can prove that
g9 __{_9¢
( oT )G,V_( oT )v' (4.55)
By differentiating (3.43), we obtain
(0] . du rap as \
( or )v_( oT )v+v( oT )U—T(.WT}; }1;—8. (456)

Since (see Sec. 4.3.1)

(=), =7 (=)= (4:5)
we have
()= (), (4.58)
Combining this with (4.55) and (4.32), we have
(5 )av=s—v (57 ). (4.59
(6) We can easily show that
(F)e.r=7 (5 )s (4.60)

From (3.43) we see that
agp __{ Ou op
( ov )T_( dv )T+p+v( av
Since (see Sec. 5.1.1)

o1 (2), on

du . ap
( v )T_T( aT )‘u—_p7 (4.62)
in accordance with the Maxwell equation (4.3) from (4.62) we obtain
Y _ op )
(25), =v(==),- (4.63)
Thus, taking into account (4.60), we can transform Eq. (4.33) to
op L v op i
( oG )V.T—_f( v )T;' (4.64)

(7) It is obvious that

(—S;L)G_p:(%‘)p- (4.65)
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If we use (4.65) and (3.35a), from (4.34) we obtain

( as ) R
G /1,p )

(8) Finally, we see that

(%) _ [ 99
( ap )G,T—( ap )T'
Combining this with (3.36a), from (4.35) we obtain

( GV) —p
oG Jp, T

(4.66)

(4.67)

(4.68)

These relationships define more precisely the Maxwell equations

for simple systems with a variable amount of substance.

4.3.4. The Maxwell equations for complex systems with a variable
amount of substance can be obtained by a method similar to that

used in Sec. 4.3.2.
From Eq. (3.150)

dU = T dS — pdV — EdW + ¢*dG

it follows that

7,

op . o
(T)sz _( F1% )c.w,s’
(56 ) w.v. 5= — (F7)

G Jw,V,S oW Jg, v, s’

From Eq. (3.151)
dH* = T dS + V dp + WdE + ¢*dG

it follows that
( oT ) _( op* )
G /s, p,t” \ S /G, p &’

(% p, E, s=( aacfv*.;)c ., s°
*
(_aa_lg—)g,p,sz( a;PE )G », S
From Eq. (3.152)
dF = — S dT — pdV — EAW + ¢*dG

7%

(4.69)
(4.70)

(4.71)

(4.72)
(4.73)

(4.74)
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it follows that

aS __ [ o9*

- (TG-)T, v, wi’('aT )G. v, w?
op __ [ op*

- (76_)V w, T—( av )G, w, T’
ag) __{ 99*

—(—65' w, V,T—( oW )G v, T

Finally, from (3.153)

db* = — SdT + Vdp + W.dE 4 ¢* dG
it follows that
_(.ai\ _('""acﬁ*)
oG /T, p. &8 \ 0T /g, p, &’
(37 — [ 99*
(a )p t T—'( op )GgT’

(4.75)
(4.76)

(4.77)

(4.78)
(4.79)
(4.80)

Of course, the derivatives of ¢* on the right-hand sides of Egs. (4.69)
through (4.80) can be calculated by using relations similar to the

above mentioned equations (4.40), (4.45), (4.50), (4.54),

(4.64), (4.66), and (4.68).

(4.59),



o Simple
Thermodynamic Systems

9.1 Partial Derivatives of Thermodynamic Potentials

Let us consider the partial derivatives of four thermodynamic poten-
tials (u, k, f, and ¢) with respect to the variables p, v, T, and s.
Obviously, we can find a derivative with respect to one of these
variables if another variable, of the remaining three, is kept con-
stant; for example, if the derivative is calculated with respect to T,
it can be defined for either p constant, v constant, or s constant. We
see that each of the named characteristic functions has twelve deriv-
atives in all. Of course, not all are of equal practical importance.
Therefore in this section we will focus our attention on the important
relations and give the other relations for reference.

5.1.1. We start with the partial derivatives of internal energy.
In Chap. 3 we found that, according to (3.26a),

(& ).=T

and, according to (3.27a),

()=

What are the other relations for the partial derivatives of inter-
nal energy?

From Eq. (3.25a)
du = T ds — p dv,
taking into account (2.63) and (2.64), we obtain

du ds
(_a_v)TzT(W)T_p' (>.1)
Combining this with the Maxwell equation (4.3), we find that
du _ ap
(5 )= (5F),—P (>-2)

This relation gives the variation of internal energy with volume in
an isothermal process.
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In the same manner we can obtain a relation that gives the varia-
tion of internal energy with pressure in an isothermal process:

(Z_Z)T:T(g_;)r—p(%)r (5.3)
Combining this with the Maxwell equation (4.4), we obtain
(5 )e=—T(57),—2 (55 )r- (5.4)

By the method used in (3.25a) with account taken of (2.63), (2.64)
and the Maxwell equations, we can easily show that

(%), =7(&).—r (5-5)
(55)=—T(). 6.6)
(55).=—r(5). 6.7
(%), =1-2(%5 ). 68)
(5 )e=T=7 (5 ). (.9)

The quantities (6u/dT),, (0u/dT),, and (du/dT); will be considered
in Sec. 5.3.

5.1.2. We turn to the partial derivatives of enthalpy. According
to (3.29a) and (3.30a),

(%)p:T and (g—;j)szv.

Next, Eq. (3.28a)
dh=Tds+vdp

together with (2.63) and (2.64) yields

oh \ __ ds
(55 ).=" (%), +> (5.10)
If we combine this with (4.4), we find that
ch v
(55 )e=2—T (3r),- (5.11)

This relation gives the variation of enthalpy with pressure in an
isothermal process.
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In the same manner we obtain a relation giving the dependence
of the enthalpy on the volume in an isothermal process:

()e=T(55)e v (), 6.12)
Combining this with (4.3), we obtain
(5 ):=7(3F),+0 (55)s (5.13)

If we use (3.28a), (2.63), and (2.64) and the Maxwell equations, we
can show that

(2),=7(%), 16
(&)= (). 19

(2).=+(2). 610
(&)=70 (Z). 10
(), =7 (), 619

We will consider the quantities (8h/87T)p, (0h/8T),, and (9h/0T); in
Sec. 5.3.

5.1.3. The equations listed in this section, especially (5.11) and
(5.2), are of great value for calculating the thermodynamic proper-
ties of substances. If we are given the data on the thermal properties
of the substance (data on p, v, T-dependence), these equations enable
us to find the values of the enthalpy and internal energy and, con-
versely, to compute the thermal properties of the substance by the
given enthalpy and internal energy.

Given the pressure p and temperature 7T, we can find the value of
the enthalpy by integrating Eq. (5.11):

P
av \ ~
h(p, T)=h(pe T)+ S [v—1 (a—T)dep- (5.19)
Po
Here h (py, T) is the enthalpy of the substance in an initial state

with the same temperature but different pressure p,.
Similarly,

QDI
3

u(v, T)=u (v, T)—§ [T( )v—p]dv. (5.20)
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Here u (vy, T) is the internal energy of the substance in an initial
state with the same temperature 7 but different volume v,.

If we know the data on the thermal properties of the substance,
we can calculate the inlegrals on the right-hand sides of (5.19) and
(5.20); here, of course, in addition to the given data on the p, v, T-
dependence we must calculate the derivatives (0v/dT)p, or (dp/dT),.
Note that in both cases integration is carried out along an isotherm,
namely, Eqgs. (5.19) and (5.20) give the variation of the enthalpy
and internal energy with p and v, respectively, but with 7 kept
constant. ’

If we take for a point of reference on the given isotherm a caloric
quantity (k or u) in the ideal-gas state (where the pressure and density
of the gas are zero), Eqgs. (9.19) and (5.20) become, respectively,

h(p, T)=he(T)+ f [U_T (%)p] dp (5.21)
0
and
u (@, T)=ue (T)+ S [T (—gl)v—p J dv. (5.22)

Here h, (T) is the enthalpy in the ideal-gas state at temperature T,
and u  (7) is the internal energy in the same state (with an infinite
specific volume). We note that the caloric quantities of an ideal gas
are functions of temperature alone. The values of h, and u« can
be calculated with a high degree of accuracy by using quantum-
statistics methods; the values are obtained on the basis of the data
on the molecular structure of the substance.

Equations (5.19) through (5.22) are widely used in calculating
the thermodynamic properties of substances via experimental p, v,
T data.

To solve the inverse problem, i.e. to calculate thermal values by
the given caloric properties, we transform (5.11) and (5.2) to

9 2
oh T
(F;T)r‘"' Py (>-23)
T 7p
and
9 £
ou T
(55 )="— P (5.24)
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(it is worth noting that 1/7, p/7, and v/T on the right-hand sides of
these relations are variables when we consider the Massieu-Planck
functions). Integrating these equations, we obtain, respectively,

T
v(ip, T) __v(p, Ty) , { { Ok 1
=t | ()T (5-25)
To
and
T
p(, T) __ p(v, Ty Ju 1
T T, g ( o )Td_T" (5-26)

0

Here v (p, Ty) and p (v, T,) are the values of v and p in an initial
state with the same pressure (Eq. (5.25)) or the same volume
(Eq. (5.26)) as in the sought state. We note that in Eq. (5.25) we
integrate along an isobar, while in (5.26) along an isochore. The
partial derivatives of the caloric quantities under the integral sign
are calculated by using the existing data on caloric properties of
the substance.

The history of thermodynamic calculations of water vapor proper-
ties knows cases where the specific volumes of water vapor were calcu-
lated using Eq. (5.25) on the basis of experimental data on the
enthalpy.

To calculate u by the known p versus v dependence on an isentrope
or the known T versus s dependence on an isochore and % by the
known v versus p dependence on an isentrope or the known 7 versus s
dependence on an isobar, we can obtain simple relations from
Egs. (3.26a), (3.27a), (3.29a), (3.30a). From (3.27a) we see that

v

u, s)=u(v, $)— 3 p dv, (5.27)

from (3.26a) that "’
u (v, s)=u(v, so)+§ T ds, (5.28)

from (3.30a) that "’
h(p, 8)="h(py, )+ § vdp, (5.29)

Po

and from (3.29a) that

h@vﬂ=h@,%%kST®. (5.30)
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Here u (vy, s) and I (p,, s) are, respectively, the internal energy and
enthalpy in an initial state on the isentrope under consideration,
u (v, sp) is the internal energy in an initial state on the isochore
under consideration, and h (p, s,) is the enthalpy in an inilial state
on the isobar under consideration.

5.1.4. We end this section by examining the partial derivatives of
the isochoric-isothermal and isobaric-isothermal potentials. Ac-
cording to (3.33a) and (3.32a).

(%)= —p and (3F),=—

These give the relations for calculating the value of f by the known p
versus v dependence on an isotherm or the known s versus 7 de-
pendence on an isochore; from (3.33a) we see that
o, N=fwe N)— | pdv, (5.31)
v
while from (3.32a) that
T
fw, T)=f, TO)-SsdT. (5.32)

To

Here f (vy, T) and f (v, T,) is the isochoric-isothermal potential in
an initial state on the isotherm or isobar, respectively. Equa-
tion (3.31a)

df = —sdT — pdv

together with (2.63), (2.64), and the Maxwell equations yield

(a ) ( )T’ (5.33)
(%), =7 (=) —= (5.34)
(55),=—r—+ (%), (5.35)
(g‘p)r* $(55 ) (5.36)
(3):=—2 (55). (5.37)
(57). (55).—s (5.38)
(%), =—o—r (%), (5.39)
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(55).=—r (%), (55). (5.40)
(%5).=—r—5(5 )., (5.4
(%),=—%. (5.42)

According to (3.36a) and (3.35a),
9\ _ 99y _
(W)T—v and (ﬁ)p——-s.

These equations enable us to easily obtain the relations for calculat-
ing the value of ¢ by the known v versus p dependence on an iso-
therm

p
¢ (py )= (po T)+ | vdp (5.43)
Po
or by the known s versus 7' dependence on an isobar
T
9 (0. =9 (p To)— | sdp. (5.44)
To
Here ¢ (py, T) and ¢ (p, T,) is the isobaric-isothermal potential
in an initial state on an isotherm or isobar, respectively. From

Eq. (3.34a)

dp = — sdT + v dp,
using (2.63), (2.64), and the Maxwell equations, we easily obtain
()= (5 ). (549
(37).= = (3F).,—= (5.46
(55 ). =v=s (). (5.47
(Z2) =—s(5), (5.48)
(5)e=—v (%), (549
(37)=v(3F).—> (550
(F).=—% (%) (55

(5], =0 ()~ (). o
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(-g—;‘)—)szv——s(%)s, (5.53)
(Z—f)p: —%p— (5.54)

The above relations arc cmployed in an analysis of thermodynamic
diagrams when one of the coordinates is f or ¢.

5.2 The Gibbs-Helmholtz Equations

5.2.1. Let us write Eqs. (3.41) and (3.44) in the following way:
u=7f-+Ts (5.99)

and

= ¢ + Ts. (5.56)

If in these relations we substitute s, respectively, via (3.32a) and
(3.35a), we obtain

w=f—T (55). (5.57)
and
h:(p—T(-?ﬁ—)p. (9.98)

We obtained these equations for mass specific quantities, but the
same can be derived for the entire thermodynamic system:

D=F—T (), (5.57a)
and
H=®—T(%%)—)p. (5.58a)

We can easily show that these equations can also be represented
thus:

7
U= _l—) y (559)

(62
h = —T) , (5.60)
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and, respectively,

oL
; T -
U= (—1) \ (5.59a)
1

52
H= (-—f) . (5.60a)

If we take into account the definitions of the Massieu functions
(3.169) and the Planck functions (3.176), we can write Egs. (5.59a)
and (5.60a) thus:

oF
U= —(_1') (5.61)
o )y
and
oD
Hz—( 1 ) . (5.62)
6T ;

We see that these relations, respectively, coincide with Eqs. (3.170)
and (3.182) derived earlier.
Equations (5.57a) and (5.58a) are known as the Gibbs-Helmholtz
equations. They play a significant role in chemical thermodynamics.
5.2.2. Let us examine a thermodynamic process in a complex
isochoric-isothermal system. Obviously, for the entire system we
can write (5.57a) for the initial state of the process as

oF -
Ui:Fi_T(_aTl-)V, (0.63)
and for the final state as
oF -
Uy—=F,—T (_a;-)v (5.64)

Subtracting termwise (5.64) from (5.63), we obtain

6 (F,—F - onp
— (U, —U)=(F,—F)—7 (2028} - (5.65)

We recall that in Chap. 3 we considered the amount of work which
a complex system can do. The combined equation of the first and
second laws of thermodynamics for such a system is of the form (1.24):

T dS = dU + p dV + dL*, (5.66)
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where dL*¥ = E dW. If we combine this equations with (3.7), we
obtain

dL* = — dF — S dT — p dV. (5.67)
We see that if the system is under isochoric-isothermal conditions
(V and T constant), then
dLy r = — dF (5.68)
and, hence,

-){I'T = Fl - F2- (5-69)

Thus, the system performs work (except work of expansion) at the
expense of the isochoric-isothermal potential of the system.
Combining (5.65) with (5.69), we find that

*
—AU=L},»—T (2521, (5.70)
where
AU - U2 _ U1 (5.71)

is the difference between the internal energies of the system in the
final and initial states of the process.

In a similar manner, for a thermodynamic process in a complex
isobaric-isothermal system we can write for the initial and final states
of the process

o -
H=0,—T (W),, (5.72)
and
oD -
szcl)z—T( aT?)p, (5.73)
whence
0(0;—D ~
—(Hy—H)=(0,— @) — 7 (2222 ) | (5.74)

Equation (1.24), by employing (3.7) and (3.4), can be trans-
formed to

dL* = — d® — S dT -- V dp, (5.75)

which implies that for an isobaric-isothermal system (p and 7' con-
stant)
dL} r = — dd (5.76)
and, hence,
Lyt = ®, — D,. (5.77)

Thus, the system may perform work at the expense of the isobaric-
isothermal potential of the system.
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If we combine (5.74) with (5.77), we find that

N aLy,
—AH:Lp,T—T( 6; T )p. (5.78)

If the process in the system is accompanied by chemical transform-
ations, L* is the work performed in the reaction. We know that
in chemical thermodynamics the concept of the heat of reaction
is widely used; since the heat of isochoric-isothermal reaction Qv is

equal to the change in the internal energy of the system as a result
of the reaction.

Qv = U, — Uy, (5.79)

and the heat of isobaric-isothermal reaction @ is equal to the change
in the enthalpy of the system as a result of the reaction,

Qp = H, — H,, (5.80)
we can write the Gibbs-Helmholtz equations (5.70) and (5.78) thus:

oLy
—Qv=L%1—T(531), (5.81)
and
6Ly
—Qp=L}r1—T | ;T)f (5.82)

The Gibbs-Helmholtz equations in this form find wide application
in chemical thermodynamics. For one, they allow the researcher to
find such an important characteristic of chemical reaction as the
heat of reaction not by means of direct thermochemical measure-
ments but indirectly, by measuring the work L* performed in the
process that accompanies this chemical reaction and by calculating
(0L*/8T). These equations are also important for analyzing the
operation of reversible voltaic cells (see Chap. 9).

0.2.3. Speaking of the Gibbs-Helmholtz equations, it is interesting
to examine a group of relations similar to them in structure. We
recall that the Gibbs-Helmholtz equations (5.57a) and (5.58a) were
obtained as a result of replacing S in Egs. (3.9) and (3.15) with the
help of (3.32) and (3.35), respectively.

Simple analysis shows that we can transform the following rela-
tions in a similar manner:

H=U-+ pV, (1.14)
® = F + pV, (3.16)
F=1U~— TS, (3.9)

® = H — TS. (3.15)
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We can transform Egs. (1.14) and (3.16) by substituting the corre-
sponding partial derivatives for p or V, and Egs. (3.9) and (3.15) by
substituting the partial derivatives for T or S. We have at our dis-
posal the following relations (considered in Chap. 3), which express p,
V, T and S in terms of partial derivatives:

T=(3%), (3.26)

and
T=(%5). (3.29)
p:_(%[é_)i" (3.27)

and
p= —(%)T, (3.33)
V:(%)S (3.30)

and
V= (%CII;—)T’ (3-36)
S=—(<5), (3.32)

and
S= —(g;;))p. (3.35)

We see that replacing p, V, T and S in Egs. (1.14), (3.16), (3.9),
and (3.15) by the partial derivatives given here yields 16 equations.
Two of them (namely, those obtained from (3.9) via (3.32) and from
(3.15) via (3.35)) we already know—they are the Gibbs-Helmholtz
equations. We can easily obtain the remaining relations of this
group. Here we give only the equations similar to the Gibbs-Helm-
holtz equations in structure.

If we combine (1.14), in succession, with (3.27) and (3.30), we find
that

H=U_V(%f_)s (5.83)
and
U=H_p(%§)s (5.84)
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Replacing p and V (in 3.16) with the help of (3.33) and (3.36),
we obtain

O=F_V (%{;)T (5.85)
and
F=o—p(32),. (5.86)
If we substitute (3.26) into (3.9), we find that
F=U—S (%)V, (5.87)
while substituting (3.29) into (3.15) yields
O=H—S (%)p (5.88)

We see that for systems with a constant amount of substance these
relations can be written in terms of mass specific quantities:

h=u—v(-g—:j)s, (5.83a)
u-—-h—p(a—’;)s, (5.84a)
o=f—v (g—i)T, (5.85a)
f=o—p (%), (5.862)
f=u—s(—asi)v, (5.87a)
p=h—s (g—:‘)p (5.88a)

We note in passing that from these relations, which express p, v,
T and s in terms of the corresponding partial derivatives, we can
obtain the following useful equations: from (3.26) and (3.29)

(%U_)V=(%fsi)p, (5.89)
from (3.27) and (3.33)

(%)sz(%)r’ (5.90)
from (3.30) and (3.36)

(%)sz (%)T’ (591

8—0427
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and from (3.32) and (3.35)

(%), = (22), 6

Incidentally, if by means of these relations we replace the partial
derivatives in Egs. (5.83) through (5.88) and in the Gibbs-Helm-
holtz equations (5.57a) and (5.58a), we will obtain the remaining
relations from the group of above mentioned 16 equations.

We can readily show that just as we can write the Gibbs-Helmholtz
equations (5.57a) and (5.58a) in the form (5.59a) and (5.60a), we can
write Egs. (5.83) through (5.88) thus:

H=|——1|, (0.93)
k

Uv=|—2-1, (5.94)

Py
o=|—"1, (5.95)
7 1 T

) (5.96)

Iy
I35
F:(—T) , (5.97)
0 Vv

o
S
cD:(——,l ) . (5.98)
P

Naturally, these relations can be written in terms of mass specific
values.

We should note that Eqs. (5.83) through (5.88a) obviously have

a certain pedagogical interest: for ome, Eqs. (5.84), (5.84a), and

(9.83), (5.83a) serve the same purpose for isochoric-isentropic

and S constant) and isobaric-isentropic (p and S constant)

systems, respectively, as the Gibbs-Helmholtz equations do for
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isochoric-isothermal and isobaric-isothermal systems. But unlike
the Gibbs-Helmholtz equations, these equations are insignificant
in thermodynamic calculations.

3.3 Equations for Heat Capacities

5.3.1. In thermodynamics the (mass specific) heat capacity in the
most general form is given by the relationship

c,=T(j—;)z, (5.99)

where ¢, is the heat capacity in a process in which a parameter, z, is
kept constant.

In this relation we can replace z by any generalized forces and gener-
alized coordinates. The most widespread are the isobaric heat
capacity

as
er=T(5), (5.100)
and the isochoric heat capacity
ds
co="T (ﬁ)p. (5.101)
Since according to (2.6)
as ds oh
(37 ),= (%), (), (5102
and
ds ds du © -
(o7 ).= (5 ). (57 ). (6.103)
and from (3.29a) and (3.26a) it follows that
ds 1
(:—m)f? (5.104)
and
ds 1 - -
(3=).,= 7> (5.105).
we can write (5.100) and (5.101) as
oh =
cp= (O_T)p (5.106)
and

to=(2).- (5.107).
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9.3.2. In Chap. 7 we will introduce the concepts of the heat capac-
ity along the boundary curve, ¢,, and the heat capacity of a two-
phase mixture, c,.

9.3.3. We can find the equation that links the heat capacities ¢},
and ¢, by the following method.

In accordance with Eq. (2.71) we write

as 0s s v
(6—T)p=(ﬁ)v+(_a7)T(W)p' (5.108)
We replace the derivative (9s/dv)r via the Maxwell equation (4.3)

thus:
(%)T: (%)v

Combining (5.100) and (5.101), from (5.108) we obtain

cr—eo=T(35), (%), (5.109)
Obviously, by means of (2.68) this relations can be written
cp—cv=—T(%)T(g—;)z (5.110)
or
T (B (%), Gam
For an ideal gas, whose state is described by the ideal-gas equation
pv = RT, (5.112)
the above relations imply that
cp — ¢y, = R, (5.113)

which is known as Mayer’s formula. Equations (5.109) through
(5.111) are often used in calculating the heat capacity ¢, in terms
of the known values of the heat capacity ¢p, when it is difficult to
determine c, experimentally.

5.3.4. Taking into account (2.6), we can transform Eq. (5.100) to

. ds v
=T (55) (57),- (5.114)
Combining this with the Maxwell equation (4.2a), we find that
. op v
=T (7)., (57 ), (5.115)
In a similar manner, from Eq. (5.101) written as
d ]
o=T(35), (5%).» (5.116)
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and the Maxwell equation (4.1a) we obtain
0 i}
ev=—T (57),(37).- (417)
Equation (5.115) enables us to reveal the thermodynamic meaning
of an empirical relation known in solid-state physics as the Griinei-
sen relation. It follows from this relation that the bulk thermal
expansion coefficient for metals,

a:i(%”_)p, (5.118)

v

in a wide temperature range is uniquely related to their isobaric
heat capacities:

a = Ocp, (5.1419)

where 6 is a constant characteristic of each metal. The relation
between ¢, and o is clearly seen from Eq. (5.115), which can be
written as
1 oT
G=W(E)SCP. (5.120)
If we compare (5.120) with (5.119), we see that the quantity
(1/vT) (8T/dp)s remains constant for those metals for which the
Griineisen relation is valid.

5.3.5. We can obtain one more equation relating ¢, and ¢, in the
following way. If we divide Eq. (5.115) by Eq. (5.117), we have

Z=—(7).(%). (&), (% ). (5-121)
Combining this with (2.6) and (2.68), we find that
(%).-2(2), 62

5.3.6. Taking the partial derivative of (5.11)
oh ov
(55 )e=2—7(3r),
with respect to temperature at p constant, we have

92h %
57 =—T (ar—z)p (5.123)

Since the value of a mixed derivative does not depend on the order
of differentiation, we see that

wor =l ()Ll (B ) ) 120
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whence combining (5.124) and (5.106) from (5.123) we obtain

(a;;-)T=—T(%)p- (5.125)

This relation determines the variation of the heatl capacity ¢, with
the pressure on an isotherm.

In a similar manner, if we differentiate Eq. (5.2) with respect to
temperature at v constant,

et (5], .12

and bear in mind that
L[ () ) [ ()], o

and (5.107), we obtain
()= (82). 6129

which is a relation determining the variation of ¢, with the volume
on an isotherm.
From (5.125) we see that

cp(Py T)=cp(por T T\ (w) dp. (5.129)

This relation determines the variation of the heat capacity ¢, on
an isotherm, with the pressure increasing from p, to p.

In the same manner, from (5.128) there follows the relation that
determines the variation of the heat capacity ¢, on an isotherm,
with specific volume increasing from UO to v:

¢ T)=c, (Ve T)+ Tj ( . ) dv. (5.130)

Va

Equations (5.129) and (5.130) are widely employed in calculating
the thermodynamic properties of substances. For one, if we know
the heat capacity of a substance at low pressures, these equations
enable us to calculate the heat capacity at high pressures by the
given data on the p, v, T-dependence of the substance. They also
allow us to calculate the heat capacities of a condensed phase where,
as is known, the value of the heat capacity is affected very little
by the pressure, e.g. atmospheric pressure (the experiment for finding
the heat capacity at atmospheric pressure is simple and accurate).
Due to this, the calculation of the heat capacity of a condensed
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phase at high pressures is far simpler than a calorimetric experiment
with such a state of substance.

The situation is the same when we calculate the heat capacity of
a substance in a gaseous phase at high pressures. Now we can write
Egs. (5.129) and (5.130) in a more convenient form

P
¢ (p, T) =cp, (T)—TS (-g;,—i-)pdp (5.131)
0
and
¢o vy T) = co_ (T) + TS (L), dv, (5.132)

where we denote by Cp, (T) and ¢, _(T), respectively, the constant-

pressure and constant-volume heat capacities of a substance in an
ideal-gas state. The first term on the right-hand side of this equation
is the part of the heat capacity of a real gas that depends only on
temperature (the heat capacity of an ideal gas) and, consequently,
independent of pressure; the second term is the part that depends
on pressure. In Sec. 5.1 we pointed out that the caloric properties of
a substance in the ideal-gas state can be calculated with high accu-
racy by quantum-statistics methods on the basis of the data on
the molecular structure of the substance.

5.3.7. Equations (5.125) and (5.128) enable us to solve the inverse
problem; namely, we can calculate thermal quantities in terms of
the known values of ¢, or c,.

Double integration of Eq. (5.125) yields

v(p D) =v(p. T+ (37) " (T —To)
_ST STLT("’”’) A7)z, (5.133)
To T,

where v (p, T) is the specific volume of a substance at a given pres-
sure p and temperature T, and v (p, T,) and (9v/dT){p:To) are the
quantities in the initial state with the same pressure p ‘but different
temperature 7,.

In a similar manner double integration of (5.128) yields

P )=p @ To)+ (25 )" (T —Ty)
T T
—S S% (52), @0, (5.134)

To To
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where p (v, T) is the pressure at the given specific volume and tem-

perature, and p (v, T,) and (9p/aT)$™? are the quantities in the
initial state with the same volume v but different temperature T.

We note that these relations are interesting not only from the theo-
retical point of view. In 1932 A. Knoblaugh and others compiled
tables of water vapor specific volumes on the basis of the data (avail-
able at that time) on the isobaric heat capacity of water vapor; it
was the most unusual case in the history of thermodynamic investi-
gations when scientists had data on the heat capacity c¢p .that was
more accurate than that on water vapor specific volumes.

0.3.8. By the known values of the heat capacities ¢, and ¢, we
can easily determine the change in the enthalpy and internal energy
of a substance for p and v constant: from (5.106) and (5.107) we
see that

T
hip, T)=h(p, To)+ Sc,, aT (5.135)
and T
. T
w@, T)=u @, To)+ ch dr, (5.136)
T,

where h(p, Ty) and u (v, T,) are, Tespectively, the enthalpy and inter-
nal energy of a substance in an initial state with the same pressure
and specific volume but different temperature.

We see that the values of 2, (7) and u o (7) from Egs. (5.21) and
(5.22) are related to cpo (T) and ¢, (T) by the following equations:

T

ho (T) = ho (0) gc,,(T) daT (5.137)
and ’ ‘
T
Yoo (T) = Lo (0) +- Sc,m (T)dT. (5.138)

0

Here h, (0) and u« (0) are, respectively, the enthalpy and internal
energy of an ideal gas at T = 0 K; this temperature is usually taken
as the reference point for h, and u© .

5.3.9. To compute the derivatives (0u/dT), and (8h/8T), we give
two more equations related to the heat capacities ¢, and ¢,.

In accordance with (2.71) we can write

(77).= G )+ (5 ). (5F) (5139
0

and h oh oh h |
(or).= (o), + (%) (ar).- (5.140)
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Combining these relations with (5.2) and (5.11), respectively, we

obtain

(sr).=e+[7 (o) -2 ) (7). G140

and
(3r).=er+ =7 ()] (5F). G

5.3.10. Finally, we write (5.42) and (5.54) as

¢, = —Ts(%s?)v (5.143)

and
¢p=—Ts (%)p. (5.144)

These interesting equations relate isochoric and isobaric heat capac-
ities to the derivatives that characterize the variations of the iso-
choric-isothermal (for v constant) and isobaric-isothermal (for p con-
stant) potentials with . entropy.

5.4 Equations for Entropy

5.4.4. The variation in entropy with the thermal quantities
(p, v, T) is given by the Maxwell equations discussed in Chap. 4

(%)== ). (4.1a)
(-g_:)p: (%’)s’ (423)
(%)T: (%)’o’ (4.3)
(35)e=—(3F ), (4.4
and the relationships
(77).,=%> (5.100a)
(s7).=7% (5.101a)

5.4.2. Equations (4.1a) and (5.101a) imply that the change in
entropy in an isochoric process is defined by the equation

P2
av

s, p)—s @, p)=— | (7),dp (5.145)

P1
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or
T
s, To)—s (v, Ty)= | =2 dT; (5.146)

T

here p; and T, are the state parameters at the initial point of the
isochoric process under consideration, and p, and 7, at the termi-
nal point of the process. We see that the changes in entropy, cal-
culated via (5.145) and via (5.146), are the same. This becomes
obvious, for instance, if we compare the right-hand sides of these
equations combined with (5.117).

Similarly, from (4.2a) and (5.100a) it follows that the change in
eutropy in an isobaric process is defined by the equation

D2
a =4
s(p, Vo) —s(p, 1)) = 5 (3%)5‘1” (5.147)
Ty
Qr
T2
$(p, T)—s(p, Ty)= | - dl; (5.148)
T

here v, and T, are the parameters at the initial point, and v, and
T, at the terminal point of the isobaric process under consideration.
From (5.115) we see that the right-hand sides of these relations are
equal.

From (4.3) and (4.4) we finally obtain for the change in entropy
in an isothermal process

o

s(T, vy)=s(T, v,) = S(g—;,)—)vdv (5.149)
or '
P.2 P
s(T, p)—s (T, p)=— | (57), 9P (5.150)
P

bere p; and v, determine the initial point of the isothermal process,
P» and v, the terminal point of the process. We see from (2.68) that
the right-hand sides of these equations are equal.

5.4.3. From (1.27a)

T ds = du 4 pdv
it follows that

(ﬁ)u=i (5.151)
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while from (3.28a) written as

T ds = dh — vdp (5.152)
it follows that
os v
(3,7),1:‘7' (5.153)

These relationships are used for calculating the change in entropy
in processes with u constant and % constant, respectively. From (5.151)
we see that

$(u, ) —s (. v)= | 5-dv (5.154)
1:/1
(integration is carried out along the line u = const), and from (5.153)
b3
s(h, py)—s(h, p)=— | f-dp (5.155)
Py

{integration is carried out along the line ~ = const).
Finally, from (5.105)

syt
(5h v T
and (5.104)
( sy __ 1
%)p— T
it follows that
us
(g, 0) — s (uy,v) = | 4 du (5.156)
and “
he
$(hy P) =5 (hy, p)= | - dh. (5.157)

hy

In the first relation the integral is taken along an]isochore and in
the second along an isobar.

5.5 Other Important Partial Derivatives
of Thermodynamic Functions

5.9.1. Let us formulate some important relationships that deter-
mine the derivative (dv/dp)s and the inverse, (dp/ov)s.
In accordance with (2.71) we can write

(57).= (%) (57), (7). (5.158)
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In accordance with the Maxwell equation (4.2),

(%)= (5),

Here the derivative (6v/0s);, according to (2.6), can be written as

(%),=(7), (%), (5.159)
or, combined with (5.100a),
(%)== (57),- (5.160)
If we combine (4.2) with (5.160), from (5.158) we obtain
(5).=(%), += (). (5.161)

In a similar manner we can write

($)=(), + (.08, 20) e

From the Maxwell equation (4.1)
or \ __ ap
(7)== (%)
where, in accordance with (2.6), we can write

(%)= (%). (%), 5.163)

we find, combining this equation with (5.101a), that

(i—’i)=——f;(§—;’-) (5.164)

2

and from (5.135), (4.1) and (5.137) we obtain
dp\ __(dp T (dp
(5).=(5)—= (). (5-165)

Equations (5.161) and (5.165) are rarely mentionedyin the litera-
ture. But these relations are very useful for certain thermodynamic
calculations, as we will show in Chap. 7.

5.5.2. In thermodynamics we use the concept of the so-called ther-
mal coefficients which are defined thus:

the coefficient of isothermal compressibility

Pr=——(3),» (5.166)
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the coefficient of adiabatic compressibility
1 0 m
Be=—~ (55 ). (5.167)

and the bulk thermal expansion coefficient (which was defined
in Sec. 5.3, Eq. (5.118))

1 ov
a:—v— (67)13 .
5.5.3. The Joule-Thomson coefficient is defined by the relation
oT
p= (a—p)h. (5.168)
This quantity shows the variation of fluid temperature with pressure
in adiabatic throttling (we note that the adiabatic throttling proc-

ess occurs at constant enthalpy).
Obviously, in accordance with (2.67) the derivative (07 /dp), can

be written thus:
(%)h: —(%%)P (%)T (5.169)

If we replace the derivatives on the right-hand side of this equa-
tion by (5.106) and (5.11), we obtain a relation that defines the value
of the Joule-Thomson coefficient:

p;%[T(;—;)-)p—v]. (5.170)

We know that adiabatic throttling (for the states where p> 0,
which is the region below the Joule-Thomson inversion curve) is
used for gas cooling. An effective method of gas cooling is reversible
adiabatic (i.e. isentropic) expansion of a gas (without external
work); this effect is defined by the coefficient of adiabatic expansion

oT
n,= (75) (5.171)
From the obvious relation
oT ap os . -
(%), (%) (o7) =1 (>-172)
combined with (5.100) and the Maxwell equation (4.4a), we see that
T 9 ~
us=;(67”)p. (5.173)

Comparing p and p, enables us to establish which of the two meth-
ods of gas cooling is more effective. From "(5.170) and (5.173)
we see that

He — b = vy (5.174)
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Therefore, always
Be> H, (5.175)

i.e. adiabatic expansion is {he more effeclive method of gas cooling.
5.5.4. We know that in the process of adiabatic expansion of
a real gas inlo vacuum (lhe Joule process), with the internal energy
kepl constant, the quantity (dT/dv), is of great importance. It
shows how the gas temperature changes in the process and can be
defined in the following way: according 1o (2.67) we can write

(%)f“(#)(%)f (5.176)
Combining this with (5.107) and (5.2), we obtain
(%)== [r—7(5).] (5.477)

5.6 The Diflerential Equation of an Isentrope.
The Laplace Equation

5.6.1. Let us formulate the differential equation for an isentropic
process. Equation (3.28a)

dh = T ds — vdyp

yields for the process under consideration

(5)=—v(%). (-178)
Combining this with (5.7), we obtain
(5) =% (%). (5-479)

which is the equation of an adiabatic (isentrope).
Let us introduce the notation

k= ). (5.180)

ou /s

Here & is the exponent of the isentropic process (or adiabatic expo-
nent). Then (5.179) becomes

b= —2( 2] (5.181)

This relationship is widely used to calculate the adiabatic exponent
for a substance in various states.
5.6.2. If we combine (5.122) with (5.181), we find that

= — 22 (P ), - (5.182)

v
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From this and (5.108) it follows that for an ideal gas
k=-E. (5.183)

Next, using Eq. (5.165), we can write (5.181) thus:

[ (3),) e

5.6.3. Obviously, Eq. (5.181) can also be written in the following
form:
dlnp
k=—(Smn) . (5.185)
Integrating this relation between the points 7 and 2 on an isentrope,
we obtain
Ty
In 22— — 5 kdlnv. (5.186)
1 .
The value of the adiabatic exponent A varies with the state param-
eters; it differs considerably for different phases of the substance.
If the adiabatic exponent k is kept constant throughout a multitude

of the system’s states (between the points 7 and 2), it is clear from
(5.186) that

Inf2— _kln 22, (5.187)
1 U1
From this relation it follows, for one, that
pv* = const. (5.188)
This relation (which is valid provided the adiabatic exponent is
kept constant) is known as the Poisson adiabatic equation. But if
in the range of states under consideration the adiabatic exponent
varies with the state parameters and we know the behaviour of %
on an adiabatic, we can calculate p, in terms of the given p,, v,
and v, by Eq. (5.186).
5.6.4. The thermodynamic velocity of sound, a, is defined by the

Laplace equation
a
a:]/(%)s’ (5.189)

where p is the density of the substance; since
p =1/, (5.190)
we have

a:}/ _UZ(%)S. (5.191)
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This combined with (5.181) yields
a=Vkpv, (5.192)
and combined with (5.165) also yields

a=v) L(Z)-(2).. (5.193)

dv

5.7 Basic Thermodynamic Equations for Flow Processes

5.7.1. In Chap. 1 we noted that the equation of the first law of
thermodynamics for the flow of a liquid or gas is written thus

(Eq. (1.16)):
dg = dh 4 wdw + gdz + dliecy, + Agyss,

where w is the flow velocity, z the height, /.., the technical work
done by the flow, l4;5s the dissipative work (e.g. the work done by the
flow in overcoming frictional forces), and g the acceleration of
gravity.

We recall that the heat ¢ in Eq. (1.16) consists of two parts: the
heat brought into the flow from outside (or rejected from it to the
surroundings), gext, and the dissipative heat, gqiss; and that ggisg

is equivalent to lyss. Hence, we can write Eq. (1.16) in the form
(1.18):

d‘]ext = dh + wdw ‘l‘ gdZ + dlteCh’

This equation is valid both with and without friction in the flow.

0.7.2. Let us consider a particular case of a flow, when a portion of
the flow considered is on one level and, therefore, dz = 0 and when
there is no technical work and this work is not brought into the
flow from outside (dlieen = 0). For this particular case Eq. (1.18)
assumes the form

dgext = dh + wdw. (5.194)

For the majority of technologically important problems the case
of greatest interest is that of adiabatic flow, i.e. a flow without supply
and rejection of heat from outside (dgexy = 0). For this case (5.194)
assumes the form

dh 4+ wdw = 0. (5.195)

This implies that if an adiabatic flow accelerates (dw > 0), its
enthalpy decreases (dh << 0), and vice versa. Hence, the acceleration
of an adiabatic flow occurs at the expense of its enthalpy.

Further, Eq. (5.194) combined with (1.14a) can be written as

dgery = du + d (pv) + wdw. (5.196)
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We compare this relation with the equation of the first law of
thermodynamics in the ordinary form (1.10a)

dg = du -+ pdv.

We see that Eqs. (5.196) and (1.10a) are essentially the same,
only expressing differently the first law of thermodynamics: (1.10a)
represents the law in the most general form (for simple systems)
while (5.196) specifies the particular case where the simple thermo-
dynamic system is a fluid in flow. Then

pdv = d (pr) 4+ wdw. (5.197)
Taking into account
d (pv) = pdv + vdp, (5.198)
we find that
wdw = — vdp, (5.199)

The above derivation shows that Eq. (5.199) is valid for a flow in

any conditions of addition (rejection) of heat: when there is no fric-

tion, the flow is horizontal and the technical work is zero. This equa-

tion implies that if the pressure drops along the path of flow (dp <<

<< 0), the flow velocity increases (dw > 0) and vice versa.
Finally, from (5.195) and (5.199) we see that

dh = vdp. (5.200)

Since (5.195) is valid only for adiabatic flow without friction, the
same is true for (5.200).

Equations (5.194), (5.195), (5.199), and (5.200) are the basic rela-
tions for horizontal flow without the technical work.

5.7.3. A differential equation very important in an analysis of
adiabatic flow (horizontal flow without technical work) can be
obtained in the following manner.

The continuity of the flow implies that for a stationary flow the
fluid flow rate G is the same in any cross section of the flow; G =
= const. Since for a flow in a channel of any cross section

G = wi/v, (5.201)

where X is the area of the channel’s cross section, we have for
G constant

g _d (5.202)

p) v w

In hydrodynamics this relationship is termed the continuity equation.
90427
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For the case under consideration (horizontal flow without techni-
cal work) this equation can be transformed in the following way.
From (5.199) we see that

—=——dp (5.203)

(note that (5.199) is valid only for the flow without friction).
Equation (5.181) for adiabatic flow (s is const) can he written as

= ——dp. (5.204)

If we substitute (9.203) and (5.204) into (5.202) and assume that
in accordance with the Laplace equation (5.192)

kpv = a?, (5.205)
we obtain
as d? —uw? - R
5= 0 (5.206)
or, which is the same,
ds ! 1 -
=% (m_ 1) dp. (5.207)

Here M = w/a is the Mach number (the ratio of the flow velocity
to the local speed of sound). This equation relates the change in the
area of the channel’s cross section (for adiabatic horizontal flow with-
out friction and technical work) to the change in flow pressure and
to the Mach number. 1f in (5.207) we replace dp by (5.204) and com-
bine the result with (5.205), we obtain an equation that shows the
variation of the area of the channel’s cross section with the flow ve-
locity and M:

az 6 4y AW r
S=02—1)Z, (5.208)

Equations (5.207) and (5.208) enable us to analyze a horizontal
adiabatic flow without the technical work in channels with variable
cross sections.

For subsonic speeds (M <C 1), the convergence of a channel
(@2 << 0) corresponds to a decrease in pressure in the flow along the
channel (dp << 0). Here the velocity of a fluid increases (dw > () as
the channel converges. If the channel diverges (d£ > 0), the pres-
sure along it increases (dp = 0) and the velocity decreases (diw < 0).

For supersonic speeds (M > 1), the sign of these eflecls changes;
namely, if the channel converges (d2 <C 0), the pressure in the flow
increases (dp > 0) and the velocity of the fluid decreases (dw << 0),
while if the channel diverges (dZ > 0), the pressure decreases along
the flow (dp << 0) and the velocity increases (dw > 0).
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These modes of acceleration and deceleration of a flow are used
in well-known devices: subsonic and supersonic adiabatic nozzles
and diffusers.

5.7.4. Let us now examinc a case important from the standpoint
of practice of adiabatic flow without friction and external work, the
case of the flow of an incompressible fluid.

Since the flow takes place at dg = 0. lj;sc = 0, and lieen = 0, we
can write Eq. (1.16) as

dh + wdw + gdz = 0. (5.209)
From the equation of the first law of thermodynamics (1.10a)
dq = du + pdv

we can see that in adiabatic conditions
du = — pdv, (5.210)

and for an incompressible medium (v is constant) in adiabatic con-
ditions

du = 0. (5.211)
Next, combining (1.14a) with (5.209), we find that
du 4 pdv + vdp + wdw -+ gdz = 0. (5.212)

If we bear in mind that for an incompressible medium dv = 0 and
combine this relation with (5.211), we obtain for this particular case
of an incompressible fluid flow

vdp + wdw + gdz = 0, (5.213)

or, since v = 1/p,

dp 4 pwdw + pgdz = 0. (5.314)

This equation, which is written for the first law of thermodynamics
for the adiabatic flow of an incompressible fluid (without friction),.
is known as Bernoulli’s equation (in differential form); in hydrody-
namics this equation is derived from Newton’s laws.

5.7.5. In Sections 5.7.2 through 5.7.4 we considered tlie cases of
flow important for practice; but these are only particular cases. In
all these cases we assumed that, first, technical work is not performed
in the flow and is not done on it and, second, the flow is horizontal
(except the case considered in Sec. 5.7.4), i.e. dz= 0. Here Eq. (5.195)
is valid only for adiabatic flow, (5.199) for flow without friction,
(5.200) for adiabatic flow without friction, (5.207) for adiabatic
flow, and (5.208) for adiabatic flow without friction.

Let us now formulate the equation in the most general case, i.e.
for a flow without the restrictions imposed on the above-mentioned
relations. To this end we examine the differential equation of the

9%
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first law of thermodynamics for a flow in its general form, (1.16),
and express dh via (1.14a):

dg = du + d (pv) + wdw + gdz + dlyeen + dlyjss (5.215)
Replacing dg by (1.10a), we obtain
vdp + wdw 4 gdz 4 dljoon + dlg s = 9. (5.216)

{We note that for the case of horizontal flow without friction and
technical work this relation is transformed to (5.199).)

The differential dp from Eq. (5.216) can be written, in accordance
with (2.24), as

Ut
N
—_
~J1
N

dp :(Z—i)sdv—{— (Z—I;) ds. (5.

v

Next, according to (4.1),

(6_1’) __(i)
s ’D— auv 3,

while according to (2.6) the derivative (07/0v)s can be written as

oT \ __ ‘E_ ap
(7). = (5 ). (55). (5218
The derivative (d7/dp)s can then be replaced via Eq. (5.115), which
canYbe written as
aT T v -,
(35).=% (37, (6-219)
If we combine (5.218) with (5.219), we find that (4.1) can be trans-
formed to
P\ __ T ;v ap -
(&)= (o), (%), (5.220)
From (5.217) it then follows that
— (22 Lo 21
dp_(av)s[dv— cp (0T )pds]' (5.221)
From (5.191) we see that
oY _ (2 5.222
(7)=—(+)" (5222

Since according to (1.17) for the flow

dg = Agexy + qa1ss,
taking into account (1.20a)
dq =5 T ds
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we can write!

ds — d‘]e,\'t—;delss ) (5223)

Finally, we express the differential dv from (5.221) in terms of the
continuity equation (5.195):

dw=v(E+%), (5.224)

.224) and notation (5.118),

unt

If we consider Eqs. (5.222) through (
from (5.221) we obtain

9 l.‘: d \ =
vdp = —a> [[—:——!——f-—j—p (dext + df]diss)]- (9.229)

Substituting this relation into (5.216) and taking into account that
Gaiss = laiss and w/a = M, we obtain
dw d=< o | o 1 g
% =3 oy ext— oz dlieen— (;—l— a—,) dlasss——5 dz.
(5.226)

This equation, obtained by L. Vulis, enables us to draw interest-
ing conclusions about possible means of accelerating the flow.

If gext = 0, lieen = 0, lg;ss = 0, and z = const, Eq. (5.226) is
transformed to (5.208) which describes the mechanism of change of
the flow velocity in a standard nozzle (sometimes called geometri-
cal nozzle) discussed in Sec. 5.7.3.

If the cross section of the channel is constant (£ is constant) and
lieech = 0, lqiss = 0, and z = const, but there is an influx or re-
jection of heat, Eq. (5.226) implies that

Q12— 1)

O2- )% — % g (5.227)

w cp

Since always ¢, > 0 and, as a rule, o > 0, it follows that at subso-
nic flow velocities (M << 1) addition of heat to the flow (dgey > 0)
results in acceleration (dw > 0), while rejection of heat from the
flow results in deceleration. Correspondingly, in supersonic flow
(M > 1) addition of heat results in deceleration and rejection results
in acceleration. The principle of a heat nozzle, a channel in which

1 Concerning Eq. (5.223) the following question may arise. In Chap. 1 we
noted that Eq. (1.20a) is valid only for reversible processes. But processes of
energy dissipation, as a result of which the heat ¢q4,s5 is liberated, are essentially
irreversible. What is the meaning of Eq. (5.223) then? The answer is that it is
valid for a reversible process; here we tacitly assume that qgys5 is not the heat
liberated as a result of friction bhut the heat equal in value to qqyss, Which is
reversibly supplied to the flow from the surrounding medium (apart from the
heat ¢eyt brought in from the medium).
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addition or rejection of heat results in acceleration of the flow, is
based on these conclusions.

If £ is constant and ge = 0, Iy;ss = 0, and z = const and the
flow performs technical work (or this work is performed on the flow),
from (5.226) we obtain

(M2—1) 22 — T dlgen. (5.228)

We see that in these conditions a subsonic flow (M << 1) performs
technical work (for instance, rotating a turbine) and is accelerated
(dw > 0). Correspondingly, if technical work is performed on the
flow, this results in deceleration of the flow. In a supersonic flow
(M > 1) the processes are reversed. These principles are utilized
in the so-called mechanical nozzle, a heat-insulated channel in
which a subsonic flow is accelerated at the expense of the work done
on the turbine-wheel blades and a supersonic flow is accelerated due
to a blower rotated by an external source.

If 3 is constant and gext = 0, lieecn = 0, and l4ic = O but the
channel is not horizontal (dz =~ 0), then from (5.226) it follows that

(M2—1) 20— _ £ gz, (5.229)

a?

This relation implies that a subsonic flow of a gas (M <C 1) moving
upward (dz> 0) is accelerated (dw> 0) and a supersonic flow
(M > 1) moving upward is decelerated. These conclusions are of
interest when we analyze the processes of natural gas discharge from
a well (whose section is constant along the height).

If X is constant and g.ct = 0, Liecn = 0, and z = const and there
is energy dissipation due to friction in the flow, Eq. (5.226) is trans-
formed to

(1\12—1)%’:— (= - ai) dlyjss- (5.230)

p

We note that unlike the differentials dX, dg.yi, dliecn, and dz in
Eq. (5.226), which can be both positive and negative, the work of
overcoming frictional forces can only be positive (dlj;s > 0). We
see from (5.230) that a subsonic adiabatic flow with friction in a
horizontal channel with a constant cross section is accelerated
(dw > 0). Obviously, such flow can be accelerated to sound veloc-
ity, in principle, but cannot exceed it, since we would have to re-
ject heat from the flow and we have already noted that ;¢ is always
positive, in both subsonic and supersonic flow.

Finally, let us examine the case where 2 is constant and g.; = O,
lyiss = 0, and z = const, but gas consumption in the channel
varies. We can change the consumption G by flowing or suction of the
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gas through holes in the lateral surface of the channel. For this case
(G not constant) from (5.201) it follows that

dz d dG =
dv:v(_z_+—u‘)i_7). (5.231)
If we substitute this relation into (5.221) instead of (5.224), we ob-

tain from (5.216) for the case under consideration

Or—1) 2 %

{(5.232)

This relation implies that the subsonic velocity of the flow (M << 1)
increases with increasing consumption (dw> 0 for dG > 0), and
the supersonic velocity of the flow (M > 1) increases with decreas-
ing consumption (dw > 0 for dG << 0).

Equations similar to Eq. (5.226) for the flow velocity can also
be derived for pressure, temperature, and specific volume of the
flow of a fluid.



6 The Discontinuities
of Thermodynamic
Quantities on Boundary
Curves

6.1 Crossing Boundary Curves: Salient Points and
Discontinuities of Thermodynamic Functions

6.1.1. We know that at different values of the external parameters
a substance can be in various physical states. These may be the var-
ious phases of a substance (i.e. solid, liquid, or gaseous), the various
allotropic modifications of a solid substance, the superconducting
and normal states of a superconductor, the various states in ferro-
magnets (ferromagnetic and paramagnetic), antiferromagnets, ferro-
electrics (ferroelectric and dielectric), or liquid helinvm (helinm I
and helium II).

The curves that separate the domains of different physical states
of a substance on the thermodynamic state surface of a substance
are called boundary curves'. Thus on one side of a boundary curve the
substance is in one physical state, and on the other it is in another
state. Consequently, when a houndary curve is crossed, the proper-
ties of the substance change. Experiments have shown that this change
is usually of an abrupt discontinuous nature; many thermodynamic
quantities undergo a so-called discontinuity of the first kind on the
boundary curve.

From thermodynamics we know that the chemical potential of a
substance ¢ remains continnous while crossing a boundary curve;
the coexisting phases always have equal values of ¢ in addition to
temperature and pressure. As for the other thermodynamic quanti-
ties, their changes depend on the type of phase transition on the
boundary curve: the discontinuities are either in the first deriva-
tives of the chemical potential (vand s, for instance) and its higher-
order derivatives or only in the second and higher-order devivatives
while the first derivatives are continuous (the question of different
types of phase transitions is discussed in detail in the following
chapter).

Obviously, il a thermodynamic function undergoes a discontinuity
of the first kind while crossing the boundary curve, its antideriva-

1 In thermodynamics it is customary to designale the lines that separate the
region of a two-phase state of a subslance [rom one-state regions as boundary
curves (left and right); the other boundary curves (for instance, the line of phase
transition in a p, T-diagram) arc usually called curves (or lines) of phase tran-
sition. Naturally, thisisnot a matter of principle and in the [uture we will use
exclusively the term boundary curve.
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tive at the point of transition through the boundary curve has a
salient point. For example, an isentrope in the p, v-diagram has a
salient point where it intersects a houndary curve, while in the
(0p/dv),, v-diagram an isentrope has a discontinuity of the first kind
at this point (see Fig. 6.1, where (a) is a p, v-diagram and (b) a
(@p/ldv),, v-diagram).

6.1.2. We see that on the thermodynamic state surface of a given
substance each boundary curve is uniquely fixed. But if the line is.
fixed on the state surface, any thermodynamic quantity at each.

(2)
7 A dv ‘SA S=const
d‘\\c
J 0%2‘
o el 2 v
(a) (d)
Fig. 6.1

point of this line is a function of only one variable. This can be
demonstrated by a simple example. Figure 6.2 shows a line in the
x, y, z space belonging to the surface z (z, y). If the value of one var-
iable is fixed (for instance, y = y,), then, as is clear from Fig. 6.2,
there is a point on this line, a, uniquely fixed by the other two coor-
dinates (x = z, and y = y,). We see that each of the two variables.
(z and y, xand z, y and 2) is uniquely related to the other. For instance,
let us examine in p, v, T-coordinates the right boundary curve
separating the region of gaseous state of a substance from the two-
phase, liquid-vapor, region. If the temperature 7' is given, the va-
lues of pressure p and specific volume v” are uniquely specified at a
given point on the boundary curve; if p is given, T and v” are uni-
quely specified; and if v” is given, p and T are uniquely specified.

If we take the projection of this line on any of the three coordinate
planes, we see that since a thermodynamic quantity on this projec-
tion is, naturally, a function of one variable, its derivative with
respect to this variable is total (and not partial). Thus, in the v, T
plane the derivative of v” with respect to T is the total derivative
dv”/dT, in the v, p plane the derivative of v” with respect to p is the
total derivative dv”/dp, and in the p, T plane the derivative of p
with respect to 7T is the total derivative dp/dT.
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We can write these derivatives as partial, but then we must bear
in mind that the derivatives are taken along the right boundary
curve:

dv"_(av) du”_(au) dp_(r)p)

dT ~ \ 0T /richt > dp =\ dp /right * dT — \ 0T /voundary"
boundary houndary curve
curve curve

(6.1)

Sometimes we can sec such notation in the literature.

6.1.3. It isinteresting to obtain differential equations that deter-
mine the value of the discontinuity of a function crossing the boundary
curve. The general method of obtaining such relations is as follows.

Fig. 6.3

Let us examine Fig. 6.3. Here a-b is a boundary curve on the ther-
modynamic state surface. The line y = const formed where the sur-
face intersects the plane y = const, has a salient point at m. Hence,
the derivative (dz/oz), changes abruptly at this point. Obviously
(intersect the surface by the planes z = const and z = const), the
derivatives (0z/Jy), and (dy/dx), change in « similar manner at this
point.

Equation (2.24) for the total differential of the function z (z, y),

dz—=— (%)de—k (g—;)T dy,

implies that if the function changes along the curve a-b, its differen-
tial can be calculated in two equivalent ways: we can take the partial
derivatives in (2.24) either on one side of the boundary curve a-b
or on the other (in Fig. 6.3 from either above the curve or below it).
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If we indicate the partial derivatives taken on one side of the
boundary curve by the superscript (1) and the partial derivatives
taken on the other side by (2), we can write (2.24) thus

dz \ (1) 6z \ (D
dz:(a—j)y dx+(-£)x dy (6.2)
or thus
dz \(2) 9z \(2)
d;:(%)y dz+(32—)x dy. (6.3)
Hence, we can write a relation for the total derivative dz/dz in
the form
z {0z \(D 0z \(1) dy
===, H#H). & (6.4)
or in the form
dz __ [ 9z \(2) 0z \(2) dy
==(%=), + (&) & (6.5)

Here (0z/0z);" and (dz/0z); are the partial derivatives taken at the
point of intersection of the line y = const with the boundary curve,

Z Zz

! g

,c°°$‘ =
1y 00%
z, -

2

Yo

'rn z yo \1}—— .I‘o 5—
(a) () (c)
Fig. 6.4

the first of them taken on one side of the curve and the second on
the other (Fig. 6.4a); (0z/0y). and (dz/0y): are the partial deriva-
tives taken at the point of intersection of the line z = const with
the boundary curve on one or the other side of the curve (Fig. 6.4bd);
dy/dz is the total derivative of the function y (z) along the boundary
curve (Fig. 6.4c¢).

We note once more that the result of calculating the derivative
is independent of which of the two absolutely equivalent relations
(6.4) or (6.5) we choose.
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If we equate the right-hand sides of these relations, we obtain
9z | (D) 9z \(1) dy 9z \(2) 92 \(2) dy ,
(%), +&) #=(&), +(F). & o

‘O_Iy 0_111 dr = \ iz y a—y-x dx *

whence

gz \ (D) dz \(2) dz (1) Jdz \(2)7] ay -

(&) @), =&)L - F) e e

This relation determines the value of discontinuity of the deriva-
tive (0z/6z), crossing the boundary curve. It enables us to calculate

the value of the discontinuity of any thermodynamic function with
a discontinuity on a boundary curve.

6.2 Discontinuity Equations for Thermodynamic
Functions on Boundary Curves

6.2.1. Instead of z, x and y we can take another sct of thermodynam-
ic quantities in Eq. (6.7). For instance, if we assume z = s, 2 = T
and y = p, then from (6.7) we obtain an equation for the value of
discontinuity in the isobaric heat capacity ¢, on a boundary curve;
if we take z = T, 2 = p, and y = &, then we can calculate the dis-
continuity in the Joule-Thomson coefficient on the boundary curve;
ifz=g¢,2=17T,and y = p, then (6.7) yields an important equation
relating the values of discontinuities in s and v; and so on.

The analysis of Eq. (6.7) is of the greatest practical interest for
the cases where z, y, and z are replaced by specific entropy s, specific
volume v, temperature 7', and pressure p.

We can easily see that z, y and z may be chosen from s, v, T, and
p by 12 different ways listed in Table 6.1.

TABLE 6.1

z z y z z y z z y z z 7
s T D T D v v T D D T v
s T v T p s v T s p T 8
s 14 v T v s v P D v s

It may seem that the number of possible ways is twice that given
in Table 6.1, since, for instance, together withz = s, 2 =T,y = p
the variant z = s, £ = p, y = T 1is also possible. The point is that
because Eq. (6.7) is symmetric in z and y, we obtain the same result
by a simple interchange of x and y.

6.2.2. Let us see what relations we can derive from Eq. (6.7)
for each of the variants given in Table 6.1.
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We introduce the following notations for the discontinuities of
the derivatives (0z/0x), and (9z/dy),:

A (3),= (=), - (&) ©.9
and
sME)=(5) (&), (6.9
(1) z=s, 2 =T, y = p. Equation (6.7) then assumes the fol-
lowing form:
A (37),=—2 (%) (6.0

Since according to (5.100a)

and according to (4.4)

ds\ ov
(TP-)T_—(—OT)P’
Eq. (6.10) transforms to
IPNEIAN
Ac,=TA (55 ) 45 (6.11)
2)z=s,z=T,y = v Here from (6.7) we obtain
ds ds dv
A5r)=—2 (&) (0.12)

Bearing in mind that according to (5.101a)

(_‘73_) _Ltr
aT |+ T

(ﬁ) _(ﬂ)
ov T_ oT v’

and according to (4.3)

from (6.12) we obtain

ap av
Ac,= — TA (—ﬁ)ﬁ (6.13)
(3) z=s, z = p, y = v. Equation (6.7) transforms to

5 (5)=—0(%), = (6.14)
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Since according to (4.1a)

(2),= (),

s _(_QB_)
(%’),,” aT |+

from (6.14) it follows that

and according to (4.2a)

ov _ ap d_v -
A (57) =2 (57). & (6-19)
(4) z=v,z = T, y = p. Here Eq. (6.7) assumes the form
dv _ ov _dﬁ_
A(W)p—_A('a}T)T aT - (6.16)
(5) z=v, 2 =T, y =s. From (6.7) we obtain
dv dv ds
Mar), =25 )rar (6.17)

Since according to (4.3a)
(%)= ).

from (6.17) it follows that

ov\y aT ds
Mar)=—8(5). o (6.18)
(6) z = v, z = p, y = s. Equation (6.7) transforms to
oy _ ov ds
A(a—P)s_—A(E)pE. (6.19)

Bearing in mind that in accordance with (4.2)

(%)= ().

from (6.19) we obtain

vy aT ds
M) =—2(%). & (6.20)
(7)z2=T, z = p, y = v. Here Eq. (6.7) assumes the following
form:
oT \ __ oT \ dv
M= &), % (621
8) z=T, z=p, y=s. From Eq. (6.7) we obtain
or \ __ oT ds .
M) =—8(5), 2. (6.22)
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Since, as it follows from (5.100a),

(L) =L
ds p_ Cp’

we can transform (6.22) to

oT , 1 ds
M) =—18(5) % (6.23)
9) z=T,z=v,y=s. Here Eq. (6.7) transforms to
aT aT ds
M) == %)= (6.24)

Since, as we see from (5.101a),

Ty _ 1
(as v—Cu’

from (G.24) it follows that

‘ or . L ds
A=) =—TaA ()5 (6.25)
(10) z=p, =T, y=v. Here (6.7) assumes the following
form:
ap _ op dv
AM5r)=—8 ) (6.26)
(1) z=p, 2 =T, y =s From Eq. (6.7) we obtain
op op \ ds ‘
N e (6.27)
Since according to (4.4a)
oy __(Ir
(—67.)7_—( ov )p ’
from (6.27) we have
dp\ _ A [ OT \ ds ‘
A (57), =2 (), ar (6.28)
12 z = p, x = v, y = s. Here Eq. (6.7) assumes the form
(12) p y
ap\ ap ds
M) == () (6.29)
Bearing in mind that according to (4.1)
op\ __ (OT
(%)== (%),

from (6.29) we obtain
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We have 12 cquations that determine the discontinuities in the
derivatives of thermodynamic quantities; namely, the derivatives
.containing s, v, T, and p. Many of these equations are widely used
in thermodynamics, and some we will use in the next chapter.

6.2.3. If we examine the above equations for discontinuities of
thermodynamic quantities on boundary curves, we can see that the
-equations containing the same values of total derivatives of thermo-
dynamic quantities along the boundary curve can be in pairs. For
instance, both Eq. (6.11) and Eq. (6.16) contain dp/dT, Eqs. (6.13)
and (6.26) contain dv/dT, and so on. Grouping the equations in pairs
according to this criterion and excluding the same total derivatives,
'we obtain a new set of useful equations.

If we write Eq. (6.11) as

ap . ACp .
dT TA Jv ! (631)
( aT )p

and Eq. (6.16) as

dv
ar — ) (6.32)
A (55 ),
and equate the right-hand sides of these equations, we obtain
[ ov 2
Cp= — 0 . (6.33)
A (_@_)T

In a similar manner, if we exclude dv/dT from (6.13) and (6.26),
we obtain

ap_ )
Ac, =T [AH( a;;))vJ . (6.34)
Aé( v )T

Excluding the total derivative ds/dp from (6.20) and (6.23), we
have

AL _[A(g_ﬁ)s]z 6.35
(%)= RN (6.35)

If we exclude ds/dv from (6.25) and (6.30), we find that

A (%v-)z— [jjé_;))]z . (6.36)

av
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Excluding dv/dp from (6.15) and (6.21), we obtain

A (57). A (w)=—a ()8 (), e

Finally, if we exclude ds/dT from (6.18) and (6.28), we obtain
an equation that coincides with (6.37).

Equations (6.33) through (6.37) relate the values of discontinuities
of different thermodynamic quantities on the boundary curve.

6.2.4. Equations (6.10) through (6.30) can easily be grouped in
pairs according to another criterion, namely, by the values of dis-
continuities of the same thermodynamic quantities. For instance,
both Eqs. (6.11) and (6.16) contain A (0v/oT),, Eqs. (6.13) and (6.26)
contain A (dp/dT),, and so on. Grouping the equations in pairs and
excluding the same values of discontinuities, we obtain another set

of useful equations.
If we exclude A (0v/0T)p from (6.11) and (6.16), we obtain

v dp \2
Aep=—T4 (35), () - (6.38)
If we exclude A (9p/dT), from (6.13) and (6.26), we obtain
. an dv \2 .
Ac, = TA (a—v)T( =) (6.39)
If we exclude A (87/dp), from (6.20) and (6.23), we find that
1y_ 1 ov dp \2
M) =78 (m ). (&) (6.40)
while if we exclude A (8T /dv)s from (6.25) and (6.30), we have
1Yy 1 op dv \2
Ma)=—72 (%) (%) (6.41)
Excluding A (9v/dT)s from (6.15) and (6.18), we obtain
ap dv aT ds
sMar),m=—2 (%) (6.42)

and excluding A (97/dv), from (6.21) and (6.28), we obtain the same
relation.

Similarly, if we exclude A (dp/dT) from (6.15) and (6.28), we
obtain

dv\ dp __, [ AT\ ds :
A7), =2 %), (6.43)

while if we exclude A (87T/dp), from (6.18) and (6.21), we obtain the
same relation.

Equations (6.38) through (6.43) complete the group of basic equa-
tions relating the values of discontinuities of different thermodynam-

100427
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ic quantities erossing boundary curves and total derivatives of the
thermodynamic quantities along these boundary curves.

6.2.5. We know that if we consider a thermodynamic system with
E a generalized force and w a generalized coordinate, then the equa-
tions obtained above can be written in the following form.

The first group of relations is

Acs = TA (%’—)g% (6.44)
Bew=—TA (2=) 2=, (6.45)
A(Sr) =2 (5), 5, (6.46)
A(S),=—2 (25) = (6.47)

A(Lr)=—a(%), o (6.48)
A (—g’él): —A (‘;—2)-‘3 (6.49)
A(SE) =—A (—‘;g—)g‘z—‘;’ (6.50)
A (%g—)= —TA (CL) Z_Z (6.51)
s () = e () e
s().—-a (£), %, 6
NI RNEARY 050
s ()= (40 2 659
The second group of relations is
Aci—= —T [A <_g—w_)§]2 , (6.56)
(5 )
Acy=T K ("—T J , (6.57)
[(2),
A(_{}_)=[A(%_E)J , (6.589)
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A () [2 (%))

—)=- m(ﬁ) , (6.59)

w /s
M)A (5 )= (GE)uA (3r). (660)

Finally, the third group of relations is

Aey= —TA (S (&), (6.61)
Aew=TA (22) (22)7, (6.62)
Am)=7a(5), (%) (6.63)
sy =ra (B)(2F, oo
A (%)%’”: —A (iaz-)wg‘i (6.65)
s() Ema (). o

These equations give the values of the discontinuities of thermo-
dynamic quantities on the boundary curves of complex systems.

10+



7 Phase Transitions

7.1 A General Survey

7.4.1. As is known, a phase is a homogeneous region in a hetero-
geneous system and phase transition is the transfer of matter from
one phase to another phase coexisting with the first. Matter can be
in a gaseous, liquid, or solid phase; some solid substances have several
phases.

A thermodynamic analysis of the conditions of phase equilibrium
shows that if two phases are in equilibrium, then the temperature,
generalized force, and chemical potential of these must be equal:

T,=T.,, (7.1)

Ly = Lo, (7.2)
and

(pl = (P2y (73)

where the labels 1 and 2 refer to the first and second coexisting phases.

For the particular case of systems performing exclusively work
of expansion (below we mainly discuss such systems), condition
(7.2) may be written as

P1= Do (7.4)

Equations (7.2) and (7.4) imply that if the phase transition occurs
at constant pressure, the temperature also remains constant in this
process.

We note that conditions (7.2) and (7.4) are met only when the
interfacial surface has no special properties that must be taken into
account. But if the interfacial surface has such properties (in par-
ticular, surface teusion), we can write condition (7.4) thus:

[)1:p2+[)*7 (75)

where p* is the additional pressure on the liquid phase caused by
surface tension. The value of p* is determined by the well-known
Laplace equation

p*¥ —o (—plr— —j-%), (7.6)
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where o is surface tension, and py and p; are the main radii of cur-
vature of the interfacial surface. In the case of a plane (p; = py; =
= o), p* vanishes and condition (7.5) coincides with (7.4). In the
case of a curvilinear interfacial surface, there appears a pressure
difference between the coexisting phases defined by Eq. (7.6).

7.1.2. The region on the thermodynamic state surface (and, con-
sequently, on phase diagrams, which are projections of this surface
on the coordinate planes) inside which the substance is in the form
of a mixture consisting of two coexisting phases is known as a two-
phase region. This region is separated from single-phase regions by
boundary curves, which connect the initial and terminal points of
the phase transition in phase diagrams. For the liquid-vapor phase
transition the boundary curve on the side of the liquid is usually
called the left boundary curve and that on the side of the vapor the
right boundary curve.

We have already pointed out that since inside the two-phase re-
gion an isobar and isotherm coincide, it is clear that

(55).""" =0, @.7)
I o
(%?);w“p“:o, (7.9)
and dp \two-ph 1
(W)T =0. (7.10)

Thermodynamic quantities on the boundary curves are functions
of only one variable; for instance, the specific volume of a liquid
on a boundary curve, v’, is uniquely
determined by the temperature or C
pressure of the phase transition.

7.1.3. In the p, T-diagram the two-
phase region is simply a line (see
Fig. 7.1); for the case of the liquid-
vapor phase transition this line is
termed the saturation line, or satura-
tion curve. The derivative dp/dT is an
important thermodynamic quantity, -
which gives the slope of the phase T
transition curve in the p, 7-diagram. Fiw. 7.1
For the liquid-vapor and solid phase- &
vapor (sublimation) phase transitions
dp/dT is always positive. For the solid phase-liquid phase transition
(melting) this value can be positive for one substances and negative
for another. The relationship between the second derivatives of
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dp/dT with respect to temperature and of . dT'/dp with respect to pres-
sure is defined (in accordance with (2.17)) by

i*p [ dp \3 &
=) o (7.10)

(we will use this relation in the future).

7.1.4. In a phase transition the quantities that are the first deriv-
atives of a thermodynamic potential (namely, specific volume v,
entropy s, internal energy u, enthalpy %, and free energy f) change
discontinuously from the value on one boundary curve to that on
another. We discuss equations for phase transitions using the nota-
tions for the liquid-vapor phase transition. We must bear in mind,
however, that these relations, according to their physical meaning,
are of a general character and valid for any phase transitions. Let
us assume that the prime on a symbol refers to the corresponding
quantity on the left boundary curve and two primes to that on the
right boundary curve; when a boundary curve is not indicated, the
quantity is labeled by a “sigma”, o.

7.1.5. The quantities that are the first derivatives of a potential
are known to be additive inside the two-phase region:

vtwoph — p’ (1 —z) +-v"x, (7.12)
stwo-ph — ¢/ (1 — z) + 5"z, (7.13)
utwo-ph —y’ (1 —z) 4+ u"zx, (7.14)
htwo-ph — p’ (1 —x) 4- bz, (7.15)
fovo-ph — /(1 — 2) 4 f'a, (7.16)

where z is the so-called degree of dryness of a two-phase mixture,
which is the ratio of the mass of dry saturated vapor in the mixture
to the total mass of the mixture. Equations (7.12) through (7.16)
imply that the degree of dryness can be expressed thus:

l)t,wo-ph — stwo-ph s utwo-ph —u
I = 7 7 = " 7 - " 7
1 —V s —S u —u
. htWO-ph —n ](tWO‘ph _fl - 1
— h//___hl = fﬂ_](l (I' 7)

7.1.6. Specific quantities associated only with a phase transition
curve are: the heat capacity along the boundary curve,

ce=T-22, (7.18)
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where ds,/dT is the total derivative of entropy with respect to tem-
perature along the boundary curve, and the heat capacity of the
two-phase region with the degree of dryness kept constant,

c,=T (g’%)x (7.19)

These concepts can be useful in analyzing processes in two-phase
systems. Speaking of ¢, we note that ds’/dT is always positive and,
consequently, c; is always positive. But ds"/dT << 0, as a rule, and
so ¢, << 0.1

7.1.7. We note in conclusion that the peculiarities in the thermo-
dynamic properties of the two-phase region result, as we will see
from the following sections, in a wide range of interesting and ele-
gant differential equations describing these properties.

7.2 The Clausius-Clapeyron Equation and Its Analogs

7.2.1. As we have noted, coexisting phases have equal chemical
potentials ¢, but the specific entropy s and the specific volume v
of the substance in a phase transition change abruptly. It is inte-
resting to obtain a relation that connects the values of the disconti-
nuities in s and v in phase transition.

To do this, we use the general equation (6.7) for the values of the
discontinuities in a transition across a boundary curve,

(&), = (&), =—[(5). (&) 1%
If wesetz = ¢,z = T, and y = p, we obtain
(&), = (), ==[(5): = (% ): Jar- @20

Since (see (3.35a) and (3.36a))

99y - s i‘P_) _
(aT )p— s, and (ap T__v,

Eq. (7.20) assumes the form
oyy 8P
s — 5(2) = (p(1) — p() o (7.21)

or
dp $(2) s(1)
T @ —p(h ? (7.22)

1 For certain substances (some hydrocarbons, for one) ds”/dT passes through
a maximum. Consequently, for such substances c; changes its sign at that point
on the right boundary curve at which s” attains its maximum.
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where dp/dT is the total derivative of the pressure with respect to
temperature along the transition curve in the p, 7'-diagram, and
s and s the entropies at the point of phase transition on the right
and left boundary curves.

This equation, which relates the slope of the p, T’ transition curve
and the discontinuities in entropy and specific volume at the point
of transition, is known as the Clasius-Clapeyron equation.

Since, as we have noted in the preceding section, isotherms and
isobars coincide in a two-phase region, i.e. at 7 = const, p is always
constant, from (3.28a) written as '

T ds = dh — vdp,

it follows that here
T (st — sD) == h® — h), (7.23)

where 42(® and 2 are the enthalpies of the substance at the point
of transition on the right and left boundary curves, respectively.
The discontinuity in enthalpy in a phase transition is termed the
heat of phase transition and is usually written as

r = h® — ), (7.24)
Since from (7.23) and (7.24) it follows that
s — s = r/T, (7.25)
we can write the Clausius-Clapeyron equation as
dp r -
aT T (o®—pm) - (7.26)

The Clausius-Clapeyron equation describes different phase tran-
sitions, such as melting, vaporization, and sublimation.

7.2.2. If we examine a phase transition in a thermodynamic sys-
tem performing work other than work of expansion, i.e. a system in
which the generalized force is the parameter &€ and not pressure p
and the generalized coordinate is the parameter w and not specific
volume v, we can obtain an equation similar to the Clausius-Clapey-
ron equation.

If in Eq. (7.26) we set z = ¢*, x = T, and y = &, we obtain

ap* )(1> R )(2) . [( ag* )(1) _( agp* )(2) dE
(aTg (aTg_ o8 Ir ot IT dT ’

taking into account thal according to (3.75a)

( ?3(;’* )gz_s
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and according to (3.77a)

we obtain
dg _ s(2) — (1)
dT ~— w@)—w) *

(7.27)

Just as we did with the Clausius-Clapeyron equation, we can
write Eq. (7.27) as
g r

dT T T (w®—w®) ? (728)

where dE/dT is the total derivative of the generalized force & with
respect to temperature along the transition curve, and (w'® — wm)
the value of the discontinuity in the generalized coordinate at the
point of phase transition. Obviously, for such thermodynamic sys-
tems Eqgs. (7.27)-(7.28) play the same role as the Clausius-Clapeyron
equation for simple systems.

If we want to pass from the general equation (7.27), or (7.28),
to the equation for a given system, we must replace & and w by the
values of generalized force and generalized coordinate for the given
system.

Let us consider, for example, the phase transition of a supercon-
ductor from the superconducting state to the normal in a magnetic
field. We recall that for the thermodynamic system, i.e. a magnetic
substance in a magnetic field, the external magnetic field strength
H is the generalized force and the magnetization j is the generalized
coordinate. Hence, from (7.28) we can see that the analog of the
Clausius-Clapeyron equation for such a system is

dH ¢» q -
a7 T (inorm—lsuper) ’ (7.29)
where dH ../dT is the slope of the transition curve in the H, T-dia-
gram (H ., is the critical magnetic field for a given superconductor),
g is the heat of phase transition of the superconductor from the super-
conducting state to the normal, and jhorm and jg,per are the values of
specific magnetization in the normal and superconducting phases,
respectively.
We know that the (mass) specific magnetization of a superconduc-
tor in the superconducting state is given by the formula

. Us i
Jsuper = _———mr;‘e;[ & 9 (730)

where vgyper 1S the specific volume of a superconductor in the super-
conducting state. The specific magnetization of a superconductor in
the normal state, jhorm, is negligible as compared with jg,per and
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we may neglect it in calculating the difference (jnorm ~~ jeyper).
Bearing this in mind, from (7.29) we obtain

dHci- _ 4:":(7 ~-

aT - TvsuperHcr * (1'31)

This equation for the phase transition in a superconductor was first
obtained by W. Keesom in 1924 and is similar to the Clausius-
Clapeyron equation for ordinary systems.

Since the heat of phase transition, g, is positive, from (7.31) it
follows that always

dHcr
a7 < 0, (7.32)

i.e. the critical magnetic field strength of a superconductor increases
as the temperature drops. This conclusion corresponds completely
to experimental data on the temperature dependence of H,,.

7.3. The Phase Transition Equation
at Different Pressures in the Phases

7.3.1. For practical applications the cases when the coexisting
phases have different pressures are very interesting. One example is
the phase equilibrium with a curved interfacial surface; here the
pressure difference between the liquid phase and the vapor phase,
p*, is given by the Laplace equation (7.6).

Let us now formulate the relation for such phase transitions,
similar to the Clausius-Clapeyron equation for ordinary cases.

We note that the required relation, unlike the Clausius-Clapeyron
equation, must relate the derivatives dp,/dT and dp,/dT, where p,
and p, are the different pressures in the coexisting phases; it is clear
that in the general case the variation of p, and p, with temperature
is not the same (i.e. the derivatives dp,/dT and dp,/dT are not equal).
This peculiarity does not enable us to use Eq. (6.7) directly, as was
done with the Clausius-Clapeyron equation. Nevertheless, we can
easily derive the required relation.

Since on the entire tramsition curve, in accordance with (7.3),

1 = Po

the total derivatives de/dT taken for each of the two phases along
the transition curve are equal, too:

ap, _ do
=t (7.33)
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Next, from (2.8) it follows that

E O RIS S
and
E Rl SIRNE e N

We note once more that the right-hand parts of these relations con-
tain different pressures of the coexisting phases.

If we combine (7.33), (7.34) and (7.35) with (3.36a), (3.35a), and
(7.25), we find that

ap ap r
Ve gr T Vigr =T (7.36)

This equation, resembling the Clausius-Clapeyron equation to some
extent, relates the quantities dp/dT for the coexisting phases at
different pressures. If the pressures are the same, Eq. (7.36) auto-
matically transforms to the Clausius-Clapeyron equation (7.26).

7.3.2. Now we consider the case where the temperature of the
equilibrium phases is kept constant, while the pressure in one of the
phases increases. Let us see whether the pressure changes in the other
phase, and if it does, what is the law?

Since, obviously (see (2.8)),

dp; __ dp, dp;
ar, ~ dp, aT ’ (7.37)

we can write Eq. (7.36) as

ap, r dT

vzﬁr—vi:_T—d—pl' (738)

If, as we noted abowve, the temperature in the coexisting phases is
kept constant (d7 = 0), from (7.38) it follows that

ap,y — W
(a_pl‘)r—T;' (7.39)

This important relation, known as the Poynting equation, implies
that if the pressure in one of the coexisting phases increases (with T
kept constant), the pressure in the second phase increases, too, and
the change in pressure in the coexisting phases is inversely propor-
tional to the specific volumes of these phases.

If the two coexisting phases were at the same pressure p, and then
the pressure in one of the phases increased to p,, the increase in pres-
sure in the second phase (from p, to p,) would be

p\
Po—po= 51 ( gﬁ: )T aps, (7.40)

Po
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whence in accordance with the Poynling equation
Y1
=g 7.41
P2—Po= ) 7~ 4Py (7.41)
2
Po
If the ratio v,/v, does nol change considerably with pressure (this
is usually the case), we can write (7.41) Lo an approximation suffi-
cient for practical calculations as?
U1

Po— Po= K(Pi_l’o)- (7.42)

Next, if we denote the pressure difference between the coexisting
phases by

p* = py — pa, (7.43)
from (7.42) it follows that
P1=DPo-t—5=— P¥, (7.44)
or, which is the same,
Pr=Po+— =5 I*. (7.45)

These equations relate the quantities p,, p,, p*, and p,.

7.4. Isolines in a Two-Phase Region in the p,T Plane

7.4.1. Now we consider a particular problem impeortant for the
subsequent presentation on the behavior of isolines inside a two-
phase region, namely, Lhe isolines v = const, s = const, u = const,
I = const, and f = const (we recall that these isolines have a salient
point on the boundary curve in the evenl of a transition from a one-
phase region to a two-phase region). In other words, we wish Lo cal-

% If we are dealing with cases where one of the coexisting phases is the vapor
phase, we must not confuse the statement about the weak dependence of the
ratio v, /v, on p; with the stateinent about the strong dependence of v, (specific
volume of the vapor phase) on p,.

From (7.39) we sec that if at liquid-vapor equilibrium the pressure in the
liquid (p,) increases considerably, the pressure in the vapor phase (p,) changes
only slightly, which is due to the great differcnce between the specific volumes
of a liquid and its vapor. Therefore, here v, changes comparatively little because
D, changeslittle (though p, increases considerably) due to the low compressibility
of the liquid. We see that in the case of the liquid-vapor (or solid-vapor) cqui-
librium the ratio v;/v, changes only slightly with p;. As for the case of the
solid-liquid equilibrium (in which due to the proximity of the values of v,
and v, the change in pressure in one of the phases results in a commensurable
increase in pressure in the other phase), the ratio v,/v, changes slightly with an
increase in p; simply because of the low compressibility of both phases.
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culate the partial derivatives (0p/aT),, (9p/0T)s, (Op/0T)y, (dp/dT)y,,
and (0p/dT); on the two-phase side of the boundary curves.

The problem is solved in the following way. In accordance with
Eq. (6.5), the relation giving the behaviour of the total derivative
of pressure with respect to temperature along the saturation line
can be written thus:

2 — (-2 )t‘”‘)'p“ 'ﬂ’_)‘““’“ 2y (7.40)

daT — \"aT /y dy It aT =

Here (dp/aT)i"°P™" is the partial derivative taken at the point of

intersection of the line y = const with the boundary curve on the

two-phase side of this curve; similarly, (9p/dy)s°P" is the partial

derivative taken at the point of intersection of the isotherm with
the boundary curve on the two-phase side of the curve, and dy/dT
is the total derivative along the boundary curve. In this equation
y can be taken as v, s, u, h, f, and so ou. Let us see how we can trans-
form Eq. (7.46) for different specific values of y.

7.4.2. If y = v, from (7.46) it follows that

dp __ ( 8p \two-ph dap )two-pn dvg” i
aT _( BT) ( ov /T aT (7.47)

v

Since on both boundary curves dv,/dT becomes infinite nowhere
except at the critical point, taking into account (7.7), from (7.47)
we obtain

e () .

Hence, inside the two-phase region on the p,7T-diagram an isochore
coincides with the transition curve.
7.4.3. Assuming y = s, from (7.46) we have

ap op two-ph dp \two-ph dsg
ar _( aT )s ( os )T ar ° (7'49)
Since in accordance with (4.4a)
op \ __ aT
( dJs )T_ _( dav )p’
it follows that
ap o op two-ph 8T \two-ph dsg
aT _( oT )s _( v )p daT * (7.50)

Since ds,/dT becomes infinite only at the critical point, from (7.8)
we find that

ap 0 two-ph
=), (7.5
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L.e. inside the two-phase region 0D the p,T-diagram an isentrope

also coincides with the transition curve.

7.4.4. For y = u we can write Eq. (74t6) ai )
a two-Ph | ap wo-p Ug _
Z; :( aIT) )u T( ou )T ar (7.52)
Since in accordance with (2.6)
op [ ép dv
( du )T—( v )T( du )T (7.93)

and in accordance with (5.2)
ou Jép \ _
('_av—)T—T( oT )” P

it follows that, taking into account (7.48), we can transform (7.52) to

ap )two-ph
dp _( dp \two-ph ( v T dug - =
d—T—(—aT_)u % _, (7.54)
aT

The quantity du,/dT on the boundary curve becomes infinite only
at the critical point. Hence, taking into account (7.7), we obtain
dp . ép )two-ph -

=) (7.53)

i.e. inside the two-phase region on the p,7-diagram a line u = const

coincides with the transition curve.
7.4.5. If we put y = h, we can write Eq. (7.46) as

dp _ ap )two-ph ép )two-ph dhg
aT '—( oT /n ( oh /T daT ~ (7'56)

Since in accordance with (5.11)

oh v
( ap )T=U_T( aT )p’
Eq. (7.96) can be transformed to

dp _ ( dp )tWO-Dh 1 dhg
aTr oT /n ptwo-ph __ T ( v )two-ph daT
oT Jp

(7.57)

The quantity dh,/dT becomes infinite only at the critical point;
at all other points on the boundary curves it has a finite value.
Taking this into account and bearing in mind that in accordance
with (7.8)

?

v \two-ph
( oT )p =
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from (7.57) we obtain

dp . dap two-ph
T _( oT )n ’ (7.58)

i.e. inside the two-phase region on the p,7-diagram an isenthalpic
curve also coincides with the transition curve.
7.4.6. Finally, if we assume that y = f, from (7.46) we have

o ()T ()T
or, which is the same, ]
Z; =( g?‘ );wo-ph+ a1 1two-pm t(iz]; : (7.60)
()
Bearing in mind that
f=u—"Ts,
we find that
(%)= (G ) =7 (55 s (7.61)
From (7.53) it follows that
()= (5 )e () (7.62)
Hence, if we take into account (5.2), we find that
(5 ) =7 (5F )21 (5 ):- (7.63)
In accordance with (4.4),
(&) == (),

Substituting (4.4) and (7.63) into (7.61), we obtain

(=), =[7(5).—2) (5 ), +7(5),, (169

whence, after simple transformations and taking into account the
fact that
(), (5)e == ()
aT J» op /T - aT p,

(Ta;‘):r = _1’( Zf, )T- (7.65)

we find that
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Then from (7.60) we obtain

dp . ap \two-ph 1 ( ap )two-ph dfs .
oT —( aT )f. P ov JT aT (7.66)

Since the quantity df,/dT everywhere on the left and right bound-
ary curves (except at the critical point) is finite, from (7.66), with
due regard for (7.7), it follows that

dp - op two-ph
dT _( aT )f ) (7.67)

i.e. on the p,T-diagram a line f = const also coincides with the tran-
sition curve inside the two-phase region.

7.4.7. Thus, from (7.48), (7.51), (7.55), (7.58), and (7.67) it follows
that '

dp op )two-ph op two-ph_( op two-ph
PT—(OT _(aT) T\ oT )u

ST e

v S

i.e. all the isolines inside the two-phase region on the p,7-diagram
coincide with the transition curve. This is not surprising, since if

9 ¢ ?
< ¢

3

Il

¢ ¢
T - '3
(@) (b 7 (c) T
Fig. 7.2

we consider the thermodynamic state surface of a substance in differ-
ent coordinate systems—in the p,v, T space as well as the s,T,p space
the u,T,p space, h,T,p space, and the f,T,p space—we see that the
two-phase region is projected onto the p,T plane and becomes the
transition curve. It is clear that any lines passing inside the two-
phase region in other coordinate planes coincide with this curve.

7.4.8. Unlike the quantities v, s, u, k and f, which change discontin-
uously in a phase transition, the chiemical potential ¢ for the coexist-
ing phases is the same. Therefore, there is no two-phase region as
such on the thermodynamic state surface of a substance in the ¢,7,p
space but only a line of the phase transition. Its projection on the
p,T coordinate plane will naturally be the same p,T transition curve
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as in the previous cases. Its projections on the ¢,7 and ¢,p coordi-
nate planes will also be lines (Fig. 7.2 a and b shows the ¢ versus T
and ¢ versus p curves along the transition line).

We see that a line ¢ = const on the p,7-diagram intersects the
transition line. In general the line ¢ = const has a salient point at
the intersection with the tramsition curve. This results from the
following simple reasoning.

It is obvious that

()= (), /(4), ae

Since in accordance with (3.35a) and (3.36a)

o9\ _ __ ( 99 ) —
(—aT )p_ s and 3 =0

it follows that

op ___S
(%), =+ (7.70)
Hence, at the intersection of the line ¢ = const with the transition
curve on the p,7-diagram on the left of the tramsition curve (in
phase 1),

ap \( s
(=), = (7.71)
and on the right of this curve (in phase 2),
ap \(2) s
(=5 )(p = (7.72)
Since in general
s pH
—T e (7.73)

it is evident that the line ¢ = const has a salient point at the point
under consideration (see Fig. 7.2c).

7.5 Discontinuity Equations for Thermodynamic
Quantities on the Boundary of a Two-Phase Region

7.5.1. As we have noted, the quantities that change abruptly in
a phase transition are the first derivatives of a thermodynamic po-
tential, namely, specific volume v, entropy s, internal energy u,
enthalpy %, and free energy f. They change from the values on the
left boundary curve to the values on the right boundary curve. But
the second derivatives of the potential, such as ¢, and (dp/a7T),,
change discontinuously only when we cross the boundary curve.
Relations that give the values of Lhese discontinuities are of great

112427
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practical interest. We can easily obtain them, since they are partic-
ular cases of the general discontinuity equations for thermodynamic
quantities on the boundary curves obtained in the previous chapter.
Let us consider these relations.

7.5.2. We start with the discontinuity of the isochoric heat ca-
pacity on a boundary curve. Equation (6.13) combined with (7.48)
yields

- - ) e- - i
¢ two-ph __ oo one-ph — __ T ' ar — op : ' dvg 7.74
€ €y dil ( aT /v aT ( ) )

(superscripts two-ph and one-ph relate to the two-phase and the
one-phase side of the boundary curve, while o shows that we are
dealing with values on the saturation line).

For the left boundary curve of the liquid-vapor phase transition
this equation assumes the form

, , ép \’ one-ph dp 1 av’
two-ph __ »’ one-ph __ __) —_—— | =
. c. T[( x). L J e, (1.75)
while for the right boundary curve
” ’ i dp / iap ” one—ph - dv"
two-ph __ two-ph — __ — —
¢, Cy TL ar —\or )1) J ar (1.76)

Since always?

dp \’ one-ph dp
( - )v >— (7.77)
and
d I
dl’.;' > O’ (7 . 78)
it follows that always
c, two-ph __ ¢, one-ph > (), (7.79)
Similarly, since
dp \*two-ph dp
( a.T_)v <—dT (7.80)
and
always
¢! two-ph __ ¢ one-ph ~, (), (7.82)

Thus, the isochoric heat capacity suddenly increases when passing
from the one-phase region to the two-phase region. The behavior of

3 Except for the critical point (see Chap. 9). In some cases dv’/dT is negative
(e.g. for water at T << 3.98 °C)
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the heat capacity ¢, when crossing the boundary curve is shown in
Fig. 7.3 (here I is the two-phase region and /7 the one-phase region).

(We note once more that this conclusion relates to the liquid-
vapor phase transition). The same can be said about sublimation,
since for this phase transition dvy,,/dT << 0 and dvgy3/dT > 0.

v) oA
c;’“’”‘Fhl Uq=const
I

: :

Y, '
| I
| L S
I ! I i
. L !
3 - s o
7 7 ;

Fig. 7.3

As for melting, dvyo/dT and dvg,y4/dT on the boundary curve are
positive for some substances and negative for others.

In the previous chapter we saw that the equations for the discon-
tinuity in the heat capacity ¢, when crossing the boundary curve
can also be written in the form (6.34)

co=T[a () 1*/a(-2),

or in form (6.39)

o7 (), (45)"

If we combine these equations with (7.48) and (7.7), we obtain for
the case under consideration, respectively,

¢’ two-ph _c’one-ph— __ T ( dv )' one-ph I:( (’)p )’ one-ph  dp ]2
’ ? op It or |+ T
(7.83)
and
’ ’ op \’ one-ph dv' \2
two-ph __ -ph
CD wo-p Cvom‘p = —T( En )T ( 37 ) (784);
and also
¢ two-ph " one-ph — __ T ( av ) one-ph[ dp_ ( ap ),, one-ph 12
v v op It T dT aT /o

(7.85)

11*
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and

~ two-ph __ »” one-ph= . ap ),, one-ph( dv” )2
¢ ¢, one-p! T(——av . ). (7.86)

Knowing the derivatives of thermodynamic quantities on the
poundary curve, we can use Egs. (7.75), (7.76) and (7.83) through
(7.86) to caiculate with a high degree of accuracy the discontinuity
in the heat capacity, Ac,, instead of employing a complex calori-
metric experiment.

7.5.3. Let us now consider the discontinuities in the adiabatic
compressibility, isentropic exponent, and sound velocity on the
boundary of the two-phase region. Equation (6.20) for the disconti-
nuity (6v/dp), combined with (7.49) yields

dv |0 two-ph v )0‘ one-ph _ [ daT ( oT )O‘ one-ph ] dsg
( op ) ( op 1l dp op /s dp
(7.87)

8 8

For the left boundary curve the equation can be written as

dv \' two-ph ( v )’one-ph_ aT _( oT )’one-ph ds’
(( op )s op /s - dp op /s ap
(7.88)
and for the right boundary curve as
( v )"two-ph v )"one-ph__ [( aT ) one-ph_ dT ds”
ap /s ( ap /s o op /s dp dp °
(7.89)

Equation (6.35) o X
o) -l
PhoTa (),

combined with Eq. (6.40)
Aa)=ra(). (&)

enables us to write the relations for calculating the discontinuity in
(dv/dp)s in another form.
If we combine (7.9) with (5.100), we find that

cLwo-Ph = oo (7.90)
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Bearing in mind that in accordance with (7.51)
( aT two-ph_ aT
op )s T dp?
from (6.35) we obtain

(ﬁ)'t\\'o-ph dv \‘one-ph cp ‘ome-phr 4T §T \’one-ph :|2
op /s —("a?)s - T [7;—(’55)5
(7.91)
and
( o )”two-ph dv \”one-ph cp “one-ph 8T \~“one-ph  gT 72
7). (), == F )T =l
(7.92)

Here (07/8p)°™*®" is the derivative taken on the isentrope at the

point of intersection with the boundary curve on the one-phase side,

and ¢°"*®" is the isobaric heat capacity on the boundary curve on

the one-phase side.
The quantity dp/ds from Eq. (6.40) can be transformed thus:

dp __ dp aT
35— aT ds ° (7.93)

Bearing in mind the definition of the heat capacity along a boundary
curve (7.18), we obtain

dp T dp
s T 5 dT - (7.94)
Combining this with (6.40), we find that

v )'two-ph_( gv \'one-ph c? dT \2

(79-; s E)s - Tc;)one-ph (E) (7.95)
and

—Qv_)”fwo-ph_ (i)”one-ph ;2 { dT \2

(7). A (%) (.05

! and c; are the heat capacities al th ti i
where €s and ¢ pacities along the saturation line
¢he left and right boundary curves, respectively. for

From these equations we see that always

(%)’stwoﬂ)hh (%);one-ph <0 (797)

and e
(20 \"tWovh ¢y \“one-ph
\ ap )s (a—p)s < 0. (7-98)
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Since, as we know, (6v/dp), is always negative, these relations imply
that the absolute value of the derivative (dv/dp), always increases
when crossing the boundary curve from the one-phase region to the
two-phase region:
“dv \ otwo-ph Jv \ o one-ph -
() 7 =50 (7.99)

Equations (7.88), (7.89), (7.91), and (7.92) and especially (7.95)
and (7.96) are useful for calculating the discontinuities in the adia-
batic compressibility, isentropic exponent, and sound velocity in
the event of a transition across a boundary curve.

We recall that the quantity given by (5.167) is known as the coef-
ficient of adiabatic compressibility

1 dv

po=—=(3r).-

We see that we can easily calculate the discontinuity in B, if we know
the relations for calculating the discontinuity in (dv/dp);,.
Next, we recall that the isentropic exponent is given by (5.181)

—_Y(or
k= P ( v )s,
whence
dav v
(W)s— BT (7.100)
Substituting (6v/dp)s into (7.95) and (7.96), we obtain, respectively,
1 1 oped aT \2 ~
e e = e 4y ) (7.101)
P
and
1 1t ped dT \2 _
L two-ph - . one-ph ~ Tp"c one-ph (d_p) (1102)
P

This enables us to calculate the discontinuity in the isentropic ex-
ponent of a substance when crossing the boundary curves.

These relations, in particular, imply that for both the left and
the right boundary curve the isentropic exponent on the one-phase
side of the boundary curve, ko one-ph jis always greater than that on
the two-phase side, ko two-ph,

We recall that the sound velocity in a substance, a, is related
to (dv/dp)s via the Laplace equation (5.191)

o=/ —v2 (L),
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whence
dv 2 -
(5 ).=—(+)" (7.103)
Substituting into (7.95) and (7.96), we see
1 1 . cs” 2
(a,two-ph)i - (a'one-ph)g - Tv/gc;)one-ph (E;) (7.104)
and
1 1 ;2 dT \2
(a"t“'O-ph)z _ (a"OTlE-ph)2= Tvugc;one-ph ( dp ) ¢ (7'105)

These equations give the magnitude of the discontinuity in the
sound velocity on the boundary of the two-phase region and show,
for one, that in a transition from the one-phase region to the two-
phase region the sound velocity always decreases, i.e. agoone-ph >
> a° two-ph.

7.5.4. Now let us study the discontinuity in the Joule-Thomson
coefficient on the boundary of the two-phase region. In accordance
with (5.168), the Joule-Thomson coefficient is defined thus:

or
H= (W)h :
The Joule-Thomson coefficient, like the thermodynamic quantities
discussed above, changes abruptly when crossing the boundary curve.

The value of the discontinuity can be determined by (6.7).
If wesetz =T, z=p, and y = h, from (6.7) we obtain

8T \otwo-ph 8T \o one-ph
(&) (%)

op /n h
8T \o two-ph 0T \o one-ph7 dh,
==&, =) (7.106)
or, taking into account (5.168) and (5.106),
) ] 1 1 dhg
po two-ph — o one ph=(cgone-ph —cgtwo-ph) 5 (1.107)

Since, as we already know, in the two-phase region
two-ph

cp = 00,
it follows that
! 1 ah
-ph h _ 20
0 two-ph __ ;0 one-p cg SneTE Iy (7.108)

This relation gives the discontinuity in the Joule-Thomson coeffi-
cient on a boundary curve.
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1f we combine (5.168) with (7.58), we can see that
ar

- (7.109)

two-ph —
p rh —

Hence, the values of p on the left and right boundary curves on the
two-phase side are the same:

lJ{ltv]o-ph —- “"two-ph — ptWO‘ph. (7. 1 10)
h )
A

¢ g
[
}s‘*
3
/ ~

P

Fig. 7.4

Taking this into account, we can write (7.408) for the left bound
ary curve as

’ ‘1 dhl
two-ph __ -ph — .
ptwo-ph __ y,’ one-ph — T (7.111)
and for the right boundary curve as
utwo-ph __ "one-ph — 1 L (7.112)

TeReTE dp *
If we examine the h,p-diagram (Fig. 7.4), we see that dh’/dp is

always positive, which implies that always

“'one-ph < Htwo-ph. (7.113)

From the h,p-diagram we also see that in the low pressure regions
dh”/dp is positive, and as the pressure increases the sign of the de-
rivative changes. Consequently, at low pressures

pﬁone-ph < ptwo-ph’ (7.1 14)

while at high pressures
.uvone-ph > ptwo-ph. (7'115)
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We see that these inequalities change sign at the point of the sat-
uration line where the enthalpy of dry saturated vapor A" attains
the maximum value.

7.5.5. Now let us turn to the equations for the discontinuities in
(0p/dv) 1, (8T/8v)p and 1/c, on the boundary of the two-phase region.
Equations (6.26), (6.21), and (6.23), which describe the transition
from the one-phase to the two-phase region, assume the following

form:

ME)e=—lF) " -, oo

I, -[(Z) -], aan

d
I o (G e AT
where in accordal;lce with (6.8)
8 (£),= ()0~ (£)
or oz

According to (6.4) we can write

Do (R (R, g

—Z%=( gi )Uone ph (_g__):one ph dvo (7.120>
and arT 0T \o one-ph 0T \oone-ph gs,

=) +(5 ), a (7.121)

If we substitute (7.119) into (7.116), (7.120) into (7.117), and
(7.121) into (7.118), we obtain, respectively,

A ()= ()., (1.122)
A (), = (L), (1.123)

and
A5 ) = o (7.124)

This result is quite obvious if we consider (7.7), (7.8), and (7.90).

7.5.6. The equations derived in the previous chapter enable us to
obtain a few more useful relations determining the discontinuities
in thermodynamic quantities on the boundaries of the two-phase
region. Relations for the discontinuity in (dv/dT), in the event of
a transition across the boundary curve can be obtained in the fol-
lowing way.
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First, BQ- (6.15) yields

v g two-ph (av )oone-phﬁ[ dp ap \0one-ph7 dyg N
(ﬁ)s oT =2 —(3F), ] ap - (1.129)

{n accordance with (6.4) we can write

_d_p_ dp \oone-ph dp \O one-ph dg
G- (B (2
Combining this and the Maxwell equation (4.4a), we obtain
gv \O two- ph_ dv \oone-ph oT \oone-ph ¢; dvg -
( aT ) ( . oT ) o ( ov ) T dp ° (7.127)

Second, Eq. (6.18) implies that the same quantities can be written
thus:

gv O two-ph dv \ o one- ph ar QT \oonre-ph7 ¢, ~
(o) = (), = ()T e @z
If we substitute d7/dp with the help of Eq. (7.120), we arrive at
(7.127).

Third, Eq. (6.37) yields

dv 0 two-ph Ay Yoone-ph G one-ph
(&)™ =) (),

. E_T__ iT_ o one-ph o one-ph ~ (9
_[dp (6p)~ }[ ( ) :I (7.129)
If we replace dT/dp with the help of Eq. (7.120) and dp/dT with the
help of (7.126), we obtain (7.127).

Finally, Eq. (6.43) also yields (7.127).

We can obtain relations for the discontinuity in (07/dv)s from
Eq. (6.25), which for a transition from the two-phase to one-phase
region is transformed to
(ﬁj_‘)o two-ph_(iT_)q one-ph:( 1 . 1 )CS arl ) (7.130)

c

ov Js ov Js gone-ph cgtwo-ph dvg

Relations for the discontinuity in (6p/dT), follow (a) from Eq.
(6.23), which we combine with (7.51) and write for the case under
consideration

dp ép \ O one- ph 0T \oone-ph ¢
(BN (ER o
and (b) from (6.42)
dp op aone-ph _ daT 0T \oone-ph ¢ dp -
7). =&~ (%) | i (1432)

Transforming (7. 132) with the help of (7.120), we can easily show
that Egs. (7.131) and (7.132) are identical.
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We can obtain relations for the discontinuity in (87/dp), from
Eq. (6.23) if we bear in mind that in accordance with (7.51)

( oT )two—ph o aT
ap /s " dp

from (6.23) we obtain

dT 0T \o one-ph T dsg
(), = gt dp - (7.133)
Taking into account that
Sso 2o AT (7.134)

dp T dp’

from (7.133) we can obtain an interesting relation

(ZZ)7 " = (1~ ) (7.135)

op /s cg one-ph dp °

From (6.30) we obtain a relation for the discontinuity in (9p/dv)s
at the transition across the boundary curve:

( ap )crtwo-ph ( op )0 one-ph

o /s v /s
:[(%):two-ph—(z_f)jone-ph] Zj}g . (7.136)

Bearing in mind that

(% ).=—(5 ) (&)s (7.137)

dsg  dsg dT
dv - dT dvg’ (7.138)

and taking into account (4.3), (5.101a) and (7.18), from (7.136) we
obtain
dp o 1wo-ph dp \ 0 one-ph
(&) =),
ne-ph
=co| srwmem (35 )s e | e (1139)

o one-ph J . gtwo-ph ¢ d
T ¢ Vg
v v

Combining this with (5.181) and (5.191), we obtain relations, re-
spectively, for the discontinuity in the adiabatic exponent

kor two-ph . kﬁ one-ph

— 2 | e (g ) i | e (1140

D goneoh \ 3T /) T o two-ph dT | dyg
v v
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and for the discontinuity in the sound velocity
(ao tV\jo-p h)z _ (ao onc-ph)z

— —csvé[—L—( Loy R — d”] 97 (7.141)

cg one-ph \ 8T /o cg two-ph d7T | dvg

It may seem that these relations are more convenient than Egs.
(7.101), (7.102), and (7.104), (7.105), since they enable us to calcu-
late directly the discontinuities iu the adiabatic exponent A° and
in the square of the sound velocity (a°)® and not 1/k° and 1/(a%)2.
However, comparing Eqs. (7.101), (7.102) and (7.104), (7.105) with
(7.140) and (7.141), we see that the former are considerably simpler.

The relations obtained above determine the discontinuities in
the derivatives taken at the intersection of an isentrope with the
boundary curve in the v,7-, p,7T- and p,v-diagrams.

Together with Eq. (7.75), (7.76) and (7.83) through (7.86) for de-
termining the discontinuity in the heat capacity ¢, in the event of
a transition across the boundary curve, equations for the disconti-
nuity in the quantity inverse to ¢, are interesting for certain cases.

From (6.36) we obtain

l’ dT \o two-ph 6T \oone-ph2

1 1 1 (W )s o (—au—)s ]

-0 one-ph - 20 two-ph =7 dp |0 two-ph dp \0 one-ph ’ (7'142)
v " (o). (&),

and from (6.41) we have

1 1
cg one-ph Cg two-ph
_ T dp \0 two-ph ép \0 one-ph dvg \2
=z (&)= (w). ") 0

With the help of Eq. (7.130) we can easily see that these relations
are identical.

7.6 Heat Capacities on Boundary Curves

7.6.1. We have already noted that the heat capacity along a
boundary curve, ¢;, is determined via (7.18)

ds
¢s=T 57

where ds,/dT is the total derivative along the boundary curve.
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m Egs. (6.4) and (6.5) we sec that ds,/dT can be written in the

P FI';OOf the following equivalent expressions:
or
dsg __ ( ds \oone-ph ds \oone-ph dp
a7 —(6_T)p +(797)T T (7.144)
dsg _ ( s )0 one-ph ds )Uone-ph dvg
aT ( oT /v + (a—v T —dT D) (7145)
and
dsg ﬁ)c two-ph ﬁ)o two-ph dug (7 146)
dT—(aT s T(avT ar :

Bearing in mind (5.78a), (5.79a), (4.3), (4.4), and (7.48), we can
gransform these relations to
o one-ph

dsg _ °p dv \o one-ph dp
ar T _(57‘_),, ar (7.147)
-ph
dsg 03 one-p dp \oone-ph dig
7 ( a_)u a1 (7.148)
and
¢ two-ph
dso - CD dp dUO'
T = 1 —t3r ar (7.149)

Taking these relations into account, from (7.18) we obtain for the
left boundary curve

ci= e =T () T 2k (7.150)
com e (RO (7.151)
c=ch BB D (7.152)
Similarly, for the right boundary curve
= =T (4) " (7.153)
=P T (SR )T (7.154)
cy=cy twoph  p OB BT (7.155)

These equations relate the heat capacities ¢,, ¢p, and ¢, on bound-
ary curves.
7.6.2. From Eq. (3.28a) written as

Tds = dh — vdp
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and taking into account (7.18), we can sce that

_dhs D
4T %dr
This relation is most convenient for practical calculatious of the
heat capacity c,.

7.6.3. We note that if we equale the right-hand sides of Egs.
(7.151) and (7.152) and, respectively, the right-hand sides of (7.154)
and (7.155), we obtain Eqgs. (7.75) and (7.76) for the discontinuity
in the heat capacity ¢, on boundary curves.

On the other hand, equating the right-hand sides of Egs. (7.150)
and (7.151) and, respectively, the right-hand sides of (7.153) and
(7.154), we obtain the equations for the difference in the heat capac-
ities ¢, and ¢, on boundary curves on the one-phase side:

. one-ph__cq’u one-ph:Tl/( v ) one-ph dp + ( op )’ one-ph dv'J (7.1457)

(7.156)

Cs

P o7 Ip daT oT /v a7
and
oneah g oneh _p[ (22) ONH dp (dp onesh )
Cp Cy _T[(OT 0 dT+ T /s 5T |- (7.158)

We can easily show that these relations can transform to the type
(5.109), i.e.

* one-ph * one-ph __ ( ap ) one-ph ( ov )’ onc-ph e
c, —c, =T (5], 5T, (7.159)
and

" _ " _ dp \” one-ph / gv \” one-ph -
¢ one-ph __ " one ph'—T( ) ( ) '
P v — 2 \eT J» oT /p - (7.160)

Next, from (7.150) and (7.152) and, respectively, from (7.153)
and (7.155), we obtain

’ one-ph __ .’ two-ph__ i’l (ﬂ) one-ph ov’ J \
Cp c, TdT Aar ), + 57 (7.161)

and

“ one-ph __ " two-ph__ o P [ ( 6v \"ome-ph dv” " )
c; cvotr=rk (7). ] (1162

It is interesting to note that Eq. (7.161) was once used effectively
to prove the inaccuracy of experimental data on the heat capacity
¢, for water given in one article. This was done as follows. Since both

(@QuldT) " ™" and dv'/dT are positive (for water this is true at
T = 3.08°C), it follows from (7.161) that

¢, one-ph ¢ two-ph > (), (7.163)

Since comparison of the experimental data on the heat capacity
¢ 7O P"  oiven in the article, with the precise data on the heat ca-
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‘one-ph "two-ph

pacity c¢p of water revealed that the values of ¢, are
greater than those of ¢,°"®P", the inadequacy of the experimental

data on ¢, was proved.

7.7 Thermodynamic Quantities in a Two-Phase Region

7.7.1. As we noted in Sec. 7.1, those thermodynamic quantities
that are the first derivatives of a thermodynamic potential (v, s, u, A,
and f) are additive in a two-phase region:

ptwo-ph — y/ (1 —x)+ vz, (7.12)
stwo-ph — o' (1 — x) + 5"z, (7.13)
utwo-ph —= ' (1 — z) 4 u'z, (7.14)
htwe-ph — o’ (1 — ) + "z, (7.15)
ftwopb — f' (1 — 1) -} f'x. (7.16)

As for quantities that are the sccond derivatives of a thermodynam-
ic potential (c,, (v/dp)s, k and a and others), their values in a two-
phase region expressed in terms of thermodynamic quantities on
the left and right boundary curves and the degrce of dryness, z, are
determined by the relations which we discuss below.

7.7.2. We start with (dv/dp),. Differentiating (7.12) with respect
to pressure with s kept constant, we obtain

ov two-ph dv’ . dv” ” ’ oz e
() (1= )+ (0 =) (5 ), (7.164)

In connection with this derivative we note the following. We
calculate the partial derivative with respect to p with s kept constant,
but since v’ and v” as well as other quantities on the transition curve
are functions of only oune variable, the derivatives of v’ and v" with
respect to p can only be total, i.e. dv'/dp and dv"/dp.

Next, since in accordance with (7.17)

S

’
§—S
xr—=

S//_S/ 9

differcntiating this with respect to pressure with s kept constant and
taking into account the note on differentiating v’ and v”, we obtain

oz q ds’ ds’
(E)SZ—-—SU_SI 3 (1—x)+7p—xJ. (7.165)

Then, in accordance with (6.4) and (6.5), we can write

! *two-ph “two-ph ds’ .
L= (L) () e e (7.166)
dp ap /s as /p dp
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and
dav” _ _aL)”two-ph _QK_)" two-ph gg”
_d?—( ap ( ds Is dp *
Bearing in mind Egs. (4.2) and (7.51), we transform (7.166) and
(7.167) to

(7.167)

)

dv’ Jv \’ two-ph , aT ds'
dp —(W)s Tap Tap (7.168)
and
av” dv \”two-ph 4T ds”
=),  twT (7.169)

Substituting into Eq. (7.164) these expressions and also (7.165)
for (9z/dp)s and taking into account that according to (7.22)
vy 4T (7.170)

8”—3, ITP—,
we obtain
( av )tWO-ph_( ov )’ two-ph

ov \” two-ph
w 7 )

(1— )+ (79-; z. (7.171)

S S

-
<

‘We see that (dv/dp), in a two-phase region is additive, which is not
obvious a priori.

Similarly, differentiating (7.12) with respect to 7' with s kept con-
stant, we can show that

( av )tWO'Ph ( v )’ two-ph

F;] ” {wo-ph -
T =\ar t—a+(5r), " = (147

b S

The relation determining (dv/dp); in a two-phase region can be
obtained in another form. Equation (5.165)

(_‘ZP_) _(6_1’) _i(ii)z
av /s \dv]T ¢y \OT /v

combined with (7.7) and (7.48) is written for a two-phase region thus:

ap two-ph__ T ap \2?
(5_1))5 - ctwo-ph (FT_) ’ (7.173)
whence
v \two-ph cit)wo-ph oT \2
(E).« =TT 7;) g (7.174)
where ¢5"°®" is the isochoric heat capacity in the two-phase region.

We note that these interesting relations are almost unknown; they
are extremcly useful for calculating thermodynamic properties in
the two-phase region.
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We see that Eqs. (7.171) and (7.174), despite their apparent distinc-
tion, are identical. We can easily show this if we transform (7.171)
in the following way: since it is obvious that

and, hence,
(47).=— (%) (3r). (7.176)

it follows that allowing for the Maxwell equation (4.3a) and Egs.
(5.101a), (7.48) and (7.51), we can transform relation (7.175) for
the two-phase region to (7.174).

From (7.171), in particular, it follows that

gv "tWO-ph_ v ’* two-ph
[Tag‘(g—p)]T=(ap) U”_v(,ap)s (7.177)

and from (7.174) that

5 P 1 c; two-ph_c; two-ph op \2 - 178

[+ (F) === GF) - 01

These (identical) relations determine the variation in (dv/dp), along

an isotherm in a two-phase region; we see that the dependence is

linear (since the quantities on the right-hand sides of these equations
remain constant on an isotherm).

7.7.3. We turn to the heat capacity c, of a two-phase mixture.
The heat capacity of a two-phase mixture along the line of constant
dryness, z = const, is determined in accordance with the general
relation (5.99):

cx=T (—g-;—) (7.179)

The equation for calculating ¢, from the known values of the ther-
modynamic quantities on the left and right boundary curves and the
degree of dryness is obtained by differentiating relation (7.13) with
respect to temperature with x kept constant:

ds ds’ ds”
(?ﬁ:)x::-ET—(1-—-$)—F-ZT—I. (7.180)
Combining this with (7.18), we find that
cx = cs (1 — ) + csz. (7.181)
We see that
dex \ S
(3=), =2—. (7.182)

12—-0427
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7 7.4. Next we study ¢, in a two-phase region. Differentiating
(7.14) with respect to 7 with v kept constant and taking into account
the remark made in Sec. 7.7.2, we obtain

()" = (A—a)+ S ot @ —u) (57, (7-188)

From (7.17)

v—v’
x: " s
V' —D
it follows that
ox 1 rdv’ dv"
(ET‘)F — | ar ¥+ xJ (7.184)

Taking into account that

du’ 0 ’ two-ph 0 ' two-ph ’
= (). ), T, 8y
du” 9 ” two-ph 0 ” two-ph "
= (), () e, 189)
(2 _
(27 ), =Cv> (5.107)
Y _p(an
(’a—v)r_T( 7 )v—p’ (3-2)
and, hence,
ou two-ph_ dp
(—0_1)—)T =T—7—p (7.187)
from (7.183) we find that
ctwo-ph ¢ two-ph (1 — ) | ¢ two-Ph ., (7.188)

We see, for one, that

( ac}’wo-ph ) _ c;; two-ph __ c; two-ph
o = o . (7.189)
Finally, if in (7.188) we substitute c, """ a R
, . nd ¢ via
(7.152) and (7.155), respectively: ’ ’
. two-ph___ .7 dP dvl
Cy 0-p —CS—TFT,‘—d‘T— (7.190)
and
“two-ph __ » dp dv’
c, ‘WoP —CS_TE_T_'FT_’ (7.191)
we obtain an equation relating ¢,V ™ and c,:

two-ph __ dp [ dv’ dv’
et =T [ S (=) +S-2]. (7.192)
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This equation implies that because an isochore does not coincide
with a line z = const, i.e. due to the variation of the degree of dry-

ness along an isochore (redistribution of substance between phases),
the heat capacities 5" ™ and ¢, differ from each other by the
term on the right-hand side of Eq. (7.192).

7.7.5. Let us study the isentropic exponent in a two-phase region.

In accordance with the general definition of the isentropic exponent

(5.181)
k== (55).s

and taking into account (7.12) and (7.171), we obtain
v' (1—z)+v'z

dv \’ two-ph dv \”two-ph . .
pl{5r), a-at (), ]
Using Eqgs. (7.174) and (7.188). we can write the relation determin-
ing the isentropic exponent inside the two-phase region in the fol-
lowing form:
ktwo—ph: _l. v’ (1—z)+v"z ( dp )2, (7'194)

p C,[,; two-ph (1—'.’13)—1—6;; tWO-phz aT

Jtwo-pb — __

(7.193)

Other forms of this equation are also known. But the two equations
(7.193) and (7.194) are the simplest in form, clear in their physical
meaning, and useful for practical calculations.

7.7.6. We turn to the sound velocity in a two-phase region. The
Laplace equation (5.191) for a two-phase region is

atwo-ph — l/ _ (Utwo-ph)z ( _z_ﬁ)two-ph . (7. 195)

s

Taking (7.12) and (7.171) into account, we can transform this
equation to
v (1—z)+v"z

atwo-pk — = = =, (7.196)
VI e

while taking (7.174) into account, we can transform it to
gtwo-ph __ 7 9P v’ d—z)tviz (7.197)

a7 V T [c; two-ph (1—2)—i—c; two-ph_L_] .

These equations determine the sound velocity in the two-phase
region from the known values of the thermodynamic quantities on
the left and right boundary curves.*

¢ Here we arc speaking of the so-called thermodynamic sound velocity, i.e.
the sound velocity at zero frequency. The question of the frequency dependence
of the sound velocity in a two-phase region is beyond the scope of this book.

12%
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7.7.7. Finally, we discuss the behavior of the Joule-Thomson
coefficient in a two-phase region. As noted in Sec. 7.4, in a two-
phase region the Joule-Thomson coefficient has the same value along
an isotherm for any value of z; namely, in accordance with (7.109),

utwo-ph = d7/dp.

We note in passing that the usual relation (5.139) for the Joule-
Thomson coefficient

H:

makes no sense for a two-phase region, since in this case on the right-
hand side of this relation, as follows from (7.8) and (7.90), there
appears an indeterminate form of the co/co type that cannot be
evaluated.

7.8. Equations Relating Thermodynamic Quantities
on the Left and Right Boundary Curves

7.8.1. The following equations relate thermodynamic quantities
on the left and right boundary curves. We start with quantities that
are first derivatives of a thermodynamic potential (v, s, u, k&, and f).

The Clausius-Clapeyron equation (7.26) implies that

u"—u'=.}% (7.198)
We recall that in accordance with (7.25)
s"— s =rl/T (7.199)
and in accordance with (7.24)
' —h =r. (7.200)
Since in accordance with (1.14a)
h =u + pv,
it follows that
w' —u =r—p@ —=v). (7.201)
Combining this with (7.198), we obtain
u—u'=r (1—-%%{)—). (7.202)

Finally, since in accordance with (3.41)
f=u—Ts,
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combining this with (7.201) and (7.25) we can write
/" —f =—p@E =) (7.203)

We recall (see Sec. 7.1) that in a two-phase region v, s, u, h, and f
are additive, i.e. they change linearly with the degree of dryness z.
Here, as we see from the above relations, the values of v, s, u and A
are greater on the right boundary curve than on the left. As for f,
from (7.203) we see that

<7 (7.204)
This is not surprising, since from (3.41) if follows that
of - ou 0s
(%)= (5):=T(5) (7.205)

And since (5.2)

Dl

(5)=T(3F),—»

(5)2=(5F)..

are valid, it follows that

and (4.3)

of
(W)Tz —p, (7.206)
i.e. the free energy on an isotherm always decreases with increasing
v.
This dependence has a clear physical meaning, too. We know that
a system in an isothermal process performs work at the expense of its
free energy. The phase transition requires work to be done and, hence,
the free energy decreases as the degree of order in the system de-
creases.

7.8.2. From Eqs. (7.198) through (7.201) and (7.203) we can easily
obtain equations relating the total derivatives of v, s, u, h and f
with respect to temperature along boundary curves.

Differentiating (7.198), we obtain

dv” dv’ v 1 dr _1_ dT dp
== (s T pam)  (7:200)
From (7.199) it follows that
ds” ds’ 1 [ dr r -
=71 lar—7)> (7.208)

from (7.200) that

dh” dh’ dr
o T dr —ar (7.209)
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from (7.201) that
du” du’ ar r . ,

o e —ar T TP ) ('T—+FEW~TET)7 (7.210)
and from (7.203) that
df” d]”_ " ’ aer 1 _atr awpy)y 1

== v T w7 (2

7.8.3. We turn to the equation relating the values of the heat
capacity ¢; on boundary curves. As noted above, for the left and
right boundary curves we have, respectively,

o ds’

and
" ds”
ce=1T —7 (7.213)
Hence, it follows that
" , . ( ds” ds’
cs—c3=7 (TT—_d_T) (7214)
Combining this with (7.208), we obtain
" ’ d
dy—C=Tr — . (7.215)

This equation, sometimes called the Clausius equation, relates the
values of ¢, on the left and right boundary curves.

Since the heat of vaporization decreases as the temperature in-
creases, and, hence, dr/dT << 0, it follows that always

¢ — )< 0. (7.216)

We recall that c; for most substances is always negative.
Taking into account (7.215) and (7.198), we transform (7.182)

to
(?;)T:%(g%_q. (7.217)

Hence, it follows that ¢, on an isotherm decreases with increasing v.

7.8.4. Now let us discuss the equation relating the values of the
heat capacity ¢, on boundary curves. As noted above, when the
heat capacity ¢p crosses a boundary curve, it changes discontinuously
from cg two-ph at the point of intersection of-an isobar with the bound-
ary curve on the one-phase side to infinity in the two-phase region.
Let us find the relation connecling cj°"¢-Ph and ¢j,one-ph,

In accordance with (7.205),

ah” dh'’ dr

4T — 4T 4T
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We can write the expression for the total derivative of enthalpy
on the saturation line with respect to temperature in accordance with

(6.4) thus:

dhg . 6_h_ o onc-ph a_h_ Uone-ohd_p
e (S (A
Combining this with (5.106) and (5.11), we obtain
Do megonennt [ vy — T (S2)7P] L (7.219)
Therefore, we can write
dh” dv \"one-ph7 dp ~
B — gjone: ph_{_[ (_a_T_)p ]d_T (7.220)
and
‘Z};’ ._C ‘one- ph_i_[v JR— T( g; ) One-ph] ‘;i;— . (7.221)
Substituting dh"/dT and dh'/dT into (7 209), we obtain
c;one—ph_c;)one-phz%_(v"_v ) +] [( 7 )”one-ph
b ‘one-ph 4 _
~(3r), ) (7.222)
whence
one- rone-nh __ Gr r , dv \"“one-ph dv \'one-ph dp
cpremh —comerh =S — L4 T (), (o) L
(7.223)

This equation relating c,°"¢P" and c¢,°"eP! is sometimes called
the Planck equation. It enables us to match the various values of
coone-ph ghtained as a result of independent measurements, and also
to calculate the values of c¢§one-Ph on the other boundary curve from
the known (for example, measured in an experiment) value of ¢§ one-ph
on another boundary curve. For these purposes the Planck equation
has been successfully used for water and water vapor.

We note that the Planck equation can also be oblained by sub-
stituting ¢; and c¢; from Eqgs. (7.150) and (7.153) into (7.215).

We also note that Eq. (7.129) written as

dh, r @v o one-ph 1 4
cgone-ph = 200 | po— T ( - ) Jd—; (7.224)
is convenient for practical calculations of heat capacities on boun-
dary curves.

The differential equations discussed in this chapter were derived
for simple thermodynamic systems (i.e. systems performing only
work of expansion) but can be generalized to various complex sys-
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tems. In the next chapter we will discuss an equation similar to
the Planck equation that relates the heat capacities of a supercon-
ductor in the superconducting and normal states at the phase tran-
sition point in the superconductor.

7.8.5. We derive an equation relating the values of the heat ca-

pacity ¢, on the boundary curve. As already noted, the isochoric

heat capacity changes from the value of ¢ °™*™" on the one-phase

side of the boundary curve to the value of ¢J*™¥°P" on the two-

phase side. We can obtain the equation relating the values of ¢ t¥°P"

on the left and right boundary curves, ¢, **°™ and ¢, **°P", in the
following way.
Differentiating (7.201) with respect to temperature, we obtain
du" du, _ " ’ d2p i}i dv” dv'
ar —ar =1 @ _v)dT2+(TdT _p)(dT ~ar ) (7.225)
In accordance with (6.4) the expression for total derivatives of
internal energy on boundary curves with respect to temperature can
be written, taking into account (7.48) thus:

du” _ ”t _ h dp dvll
ar =S " +(T ar _p) ar (7.226)
and
du’ _ .rtwo-ph ap ) av_ 7.997
ar S +( aT p) aT (7.227)
Substituting these values into (7.221), we obtain
" - ’ - ” ’ d‘.’.p ~
C_tho 1:’h—-CthO rh =T(U -V )ETT (/228)

This relation can be obtained in another way. The well-known
thermodynamic equation (5.128)

(5). =7 (),

combined with (7.48) for the two-phase region is written thus:

two-ph
dcy

(), =722 (7.229)

Equating the right-hand sides of this equation and Eq. (7.189),
we obtain (7.228).
From (7.228) we can see that for all substances always

c;tWO-Dh -~ c;two-ph . (7230)

Let us now find an equation relating the values of ¢, on the right

. ’ one-p! ” -ph.
and left boundary curves on the one-phase side, ¢, °"°"P" and ¢, °"¢P

We can easily obtain the relation from (7.228), (7.84), and (7.86).
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From (7.84) aund (7.86) it follows that

, ’ -ph ¢/ dv’ \2 -
one-ph _ .’two-ph ap \'onep (—— 7.231)
Cy =€, -rT(-é;)T ar | ( )
and
. " -ph dvll 2 -
‘one-ph — ."two-ph | m { 9P ) OPCP ( ) 7.2392)
€y €y 0P - ] (—(7;)7 aT |} ° ( )

Hence we see that

roneon . _ ., n d2p féﬂ ”one-ph ( dv” )2
¢lome-p — cjome ph _T[(y _U)—dTE+\ ov )T dT
() ()] (7:23%)
(Ov T . dT ’

The behavior of ¢, with v on an isotherm on the -bounda.rie§ and
in a two-phase region is shown in Fig. 7.5, where [ is the liquid re-
gion, Il the two-phase region,

and III the vapor region. ¢, |
‘ Obviously, all equations relat- o/ two-ph
ing the values of second deriva- 7=const P
tives of a thermodynamic poten- ,
tial on the left and right bound- fwo- |

. . ¢, 7 |
ary curves on the one-phase v |
side are similar in structure, —— ¢y one-ph '4\
i.e. in general they can be { ¢,
written thus: I i /4 R

y”one-ph_y’one—ph — Ay” v’ v —‘LT-

+ (y”two—ph _ y’two-ph) 4 Ay"
(7.234) Fig. 7.5

here y is a thermodynamic func-
tion that is the second derivative of a potential, and Ay the jump
of this function in the transition across the boundary curve from
the one-phase region to the two-phase region.

7.8.6. Let us discuss an equation relatiug the values of (dv/dp);
on boundary curves. Differentiating Eq. (7.198)

y oy =L 4T
T T dp

with respect to pressure, we obtain

dv" dv’ 1 dr 4T | r @T r [dT \2 -
GBS TE T ) 02

Substituting into this relation dv’/dp from (7.168) and dv'/dp
from (7.169) and bearing in mind that the difference

ds” ds’

dp ap
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combined with (7.199)
SII . S’ —_ r/71

can be writlen as
ds” ds’ 1 dr r dr

dp dp T dp TP dp’ (7.236)

from (7.235) we obtain
Jv \”“two-ph dv \ ‘two-ph r 4T _ )
(O_P-)s _(E)s =7 G (7.237)

This equation relates (dv/dp); on the left and right houndary curves
on the two-phase side. Since on the saturation line, as evidenced
by the p,T-diagram,

2T -

F <0 (1238)
and since, as we know, (dv/dp), is always negative, it follows that
always

(&) =) (7.239)

The equation relating (dv/dp);t¥°-Pt and (dv/dp),t¥o-Ph can be
written in another form. From (7.174) we see that

o) = oy 9Ty (7.240)
(31; s o T (dp )
and
)= S LAk (7.241)
(a_P s - T ( dp : ’

Hence, it follows that

” - It - h
( v )"two-ph ( . )'two-ph . cvtwo ph__c‘u wo-p

op ap N

et - (%)2 (7.242)

S

Combining this with (7.228), we obtain

dv \“two-ph dv \'two-ph ” , aTl \2 d%p -
(35 ). = (5p), = =) () e (02249)

Equations (7.237) and (7.242) are, of course, cquivalent. We can
easily show this with the help of (7.11):

dp __(d_p)3 d2T
ar: dT dp? ’

We can now obtain an equation relating the values of (dv/dp)s on
the left and right boundary curves on the one-phase side.
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From (7.95) and (7.96) it follows that

dv \ ‘two-ph dv \ ‘one-ph c; dT \2
_ — |22 . daT” - p
( op )s ( op )s TC;)()ne-ph ( dp ) (/ 24 1)
and
gv | “two-ph ( dv )”One-ph c; dT \2
(5; )S o ap s TC;On(k-ph ( E) « (7.245)

Substituting (dv/dp),t*°-P" and (dv/dp); t¥o-ph into (7.237), we

obtain
dv \ “one-ph dv \ ‘one-ph
(7).~ (%)
1 2 c 2

= [( c;onse-ph - c;)orsle-ph ) (%_;1‘)24- r %] . (7246)

Taking into account (7.237), we can write the relation thus:

dv )”one-ph av )’one-ph
( op /s ( op /s
1 dT \2 ¢, ¢, d42p
= - _— S - S _ " ’
=T ( ap ) [ c”one-ph clone-ph (U v )_dT2 :' (7247)
p P

These equations relate the values of (duv/dp), on the left and right
boundary curves on the one-phase side.

I ¢ /4

The behavior of (dv/dp)s with v on an isotherm on the boundaries

and in a two-phase region is shown in Fig. 7.6 (the notations are
the same as in Fig. 7.5).
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7.8.7. We turn to an equation relating the values of isentropic
exponent on the boundary curves. If we take into account (7.100)

'a_”) =Y
(aP s kp?
from (7.237) we obtain
vll U’ . Tp d2T
Jo two-ph — . two-ph ™ — T dpt (7.248)

Combining this with (7.242), we can write

U” v' - ” 7 dT 2 d2p
k”two-ph - k’two-ph =Pp (U —V ) ('d—p') are * (7249)

These equations relate the values of the isentropic exponent on
the left and right boundary curves on the two-phase side.
Next, from (7.245) we see that

” ’

v v
1. one-ph - ;.’one-ph

’ ”

- p CS Cs dT 2 d2T _
T [( . one-ph ~ " “one-ph ) (7;) _r—d;{] . (7.250)
p P

Similarly, from (7.246) we obtain
v” v!
J one-ph _— } one-ph

12 112
__ D dT \2 ¢ g ” ’ dzp
_T( dp ) [ ¢ one-ph - . one-ph +(U —V ) aT? :I . (7251)
P p

Such are the equations relating the values on the left and right
boundary curves on the one-phase side.

7.8.8. We derive an equation relating the values of the sound ve-
locity on boundary curves. Since in accordance with (7.103)

()= (%)
from (7.237) we find that
(_V’_)Z_(L)Z: _rar (7.252)

a”two-ph a'two-ph T dp?

Similarly, from (7.243) it follows that
(—rrr )" = () = 07— v ) (A2 )* 22 (7.259)

a”two-ph a'two-ph dp aT?

These equations relate the values of the sound velocity on the left
and right boundary curves on the two-phase side.
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We can obtain an equation relating a’ two-pt and a” tWo-ph explic-
itly, i.e. not as the difference in values of the inverse square of
a® tvo-ph hyt the difference of squares of sound velocities on bound-
ary curves. To this end we replace in the relation obvious from

(7-103)

= —uv? (—%%)s (7.254)
the values of the derivative using (7.173) and obtain
" " a ’ . s dp 2 v”2 v'e

(a’ two ph) _(a two ph) =T (_dT) ( c;’)t\wo-ph - c;two-ph ) (7'255)

This implies that always
a"two-ph =, g'two-ph, (7.256)

From (7.246) and (7.247) we obtain, respectively,
v’ 2 v’ 2
( g one-ph ) —( o one-ph )
1 ~ ¢, dT \2 e
-T (C'one-ph — ¢ one-ph ) (’E) —r dp®
P P

( v’ ) 2 ( v ) 2
a"one-ph y a’one-ph

2 ”o
1 < ¢ | . o d?p _
- T [ czljone'ph - c’z’)one-ph T (U —VU ) dT2 :I . (/-258)

—~~
-1
[\
3]
~1

A

and

These equations relate the values of the sound velocity on the
left and right boundary curves on the one-phase side.

7.8.9. Finally, we derive an equation relating the values of the
Joule-Thomson coefficient on boundary curves. We showed earlier
(Eqs. (7.109) and (7.110)) that everywhere in the two-phase region
the Joule-Thomson coefficient p is the same and is
aT
E.

Taking this into account, from (7.111) and (7.112) we easily find
that

-ph — ;’two-ph _ ,”two-ph —
”twoph_p P =M ph —

1 dh’ 1 dn’

‘one-ph gp = _“ome-ph gp °
¢p ¢y P

“"one-ph — M'one-Dh —

(7.259)
Using (2.8) and (7.109), we can write this relation in another form:
‘one-ph

1 dh’ 1 dh”
n — -
two-ph c;’one-ph aT ohePh 4T (7.260)
P

”“one-ph __

p

u
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This equation relates the values of p on the left and right boundary
curves on the onc-phase side.

7.8.10. We have found equations relating the values of basic
thermodynamic quantities on the left and right boundary curves.
The same approach can be used to obtain equations relating any
other thermodynamic quantities.

The relations of this type are useful for the cases where the values
of a thermodynamic quantity are obtained independently on the
left and right boundary curves and we want to check how much these
values are related thermodynamically. They are also useful when
we know the values of a thermodynamic quantity on one of the bound-
ary curves (usually on the liquid-phase side) and wish to calculate
it on another boundary curve.

7.9 Equations for Second-Order Phase Transitions

7.9.1. In 1933 Paul Ehrenfest introduced the concept of a second-
order phase transition.

An ordinary phase transition (according to Ehrenfest’s classifica-
tion, the first-order phase transition) is characterized, as we noted
in Sec. 7.1, by a discontinuity in the first derivatives of ¢:

v:(g—(;)T and =—(-g%)p.

The quantities v and s change discontinuously from the value in one
of coexisting phases, v and s, to the value in another phase,
v and s$®,

Ehrenfest called a trausition in which the first derivatives of a
thermodynamic potential are continuous a second-order phase tran-
sition, i.e.

v = p® (7.261)
and
s = 3, (7.262)
while the second derivatives of the potential change discontinuously,
for instance,
ds . 02@ ~
(37 ),=— (575 ),» (7.263)
Wy _ (P9
( p)T—(ap‘Z)T’ (7.264)
dv __{ %@
(57),= (3735 ) - (7.265)

The physical meaning of a second-order phase transition is beyond
the scope of this book. Here we are interested only in the differential
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equations relating the second derivalives of a thermodynamic po-
tential for coexisting phases in the event of a second-order phase
transition. In other words, we wish to obtain equalions determin-
ing the discontinuity of thermodynamic quantities on the line of
a second-order phase transition.

In a second-order phase transition, just as in an ordinary phase
transition, the two phases in the p,T-diagram are separated by a
transition curve. In the p,v-, T,v-, T,s-, and p,s-diagrams we see
that in a second-order phase transition the two phases are separated
not by a two-phase region, as in an ordinary phase transition, but
by a transition curve, since v and s at the point of a second-order
transition change continuously.

We note that the transition from one phase to another across a
second-order phase transition curve in the p,v-, 7T',v-, T,s-, and p,s-
diagrams is similar to a first-order phase transition from a omne-
phase region to a two-phase region across a boundary curve (left or
right). Indeed, in both cases the second derivatives of the potential
change discontinuously. This implies that the relations describing
the discontinuities in these quantities are similar in structure for
both the boundary curves of an ordinary phase transition and the
curves of a second-order phase transition.

7.9.2. The following second derivatives of the thermodynamic
potential undergo a discontinuity on the second-order transition
curve:

(575),= —(5),= — % (7.266)
(%)= (55 ) (7.267)

= (7). = — (52 ) (7.268)
[or (5F),).=—(5r)=—F (7.269)
[ (). ={5). (7.270)
L7 (o )2 )= (a7 ) .= — (55 ). (7.271)
l=—(5)=—(5F). (7.272)

H (L (5=
The same is true, naturally, for the inverse quantities.

In Chapter 6 we obtained the equations that give the discontinui-
ties of these quantities, namely Egs. (6.11), (6.13), (6.15), (6.16),
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(6.18), (6.20), (6.21), (6.23), (6.25), (6.26), (6.28), (6.30), (6.33)
through (6.37), and (6.38) through (6.43) if the transition occurs in
p,v, T space or Egs. (6.44) through (6.66) if it occurs in E,w,T space.
From these equations we can derive a group of relations that play
the same role for second-order phase transitions as the Clausius-
Clapeyron equation does for ordinary. These relations give the slope
of the second-order transition curve in the p,7-, p,v-, T,v-, p,s-,
T,s-, and v,s-diagrams.
From (6.31) and (6.32) it follows that®

av \(2) dv (1)
2_ 9;32)—01(_-,1) L (6_T)p -(-07)13
aT ~— v \(2) v (O T v \(2) v \ (1) ?
(o), —(5r) ] (&) —(5)
which is known as the Ehrenfest equation. Similarly, from (6.15)
and (6.21) we find that

(7.274)

D€ s R -
- 1 9 1) ¢ .
R o R G N C e b
from (6.13) and (6.26) that
P IR,
dv e —efb - (_gi)(z)_(g_;)(i)
v %
from (6.20) and (6.23) that
BN e o I e G R
@ av \ (1) T \@2) [aT \(D :
ds (-g—;)s _(-5;)3 (-Z_P-)s —(_;)S
from (6.18) and (6.28) that
o (B
' 2 H T 2 1) ?
o (F0E)N -G
and from (6.25) and (6.30) that
P (e e A I e 3 A
2= 5 = . :
* (&) =% ()=

6 The superscripts (1) and (2) denote the first and second coexisting]phases,
respectively, at the point of a second-order transition.
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From Egs. (6.38) through (6.41) we can obtain equations giving the
slope of the second-order transition curve in the p,7-, T,v-, p,s-,
and v,s-diagrams:

C( ) ety

- - 2 , (7.280)
VErE
EL: / c(“ c(l) (7 281)
—VaErerr ¢

ap _ / Hp) (cp)mJ (7.282)
TV OE-ET

and

w_ /) il
=V <a—”>

T
(2) ( )(1)

Similarly, for the second-order phase transition in the §,w,7 space
we can obtain relations giving the slope of the transition curve in
the §,7-, &,w-, T,w-, &,s-, T,s-, w,s-diagrams.

From (6.44) and (6.47) we find that

oy (“ (_ai)(‘l) ( w)(i)
ds Ct aT [« T/t
w

(7.283)

dT:['T(aw)(Z) (_)(U'J:_ (aw)(Z)_( )(1)7 (7'284)
: oT aT a5 /1 a% It
from (6.46) and (6.50) that
P 2 Rt
N ST A A
from (6.45) and (6.53) that
T 98 @ 98 \() 8\ 1 aE ()
_Z_Z’):__ [(aTc)(E)_cé)aT )w J:_ ((Zg)fz) (aw)T (7.286)

13—0427
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from (6.49) and (6.51) that
O TR i

a8 _ V& 3 ¢
ds (_0_10_)(2)__( ow )(1) - (i)(-‘)_ oT )(1) ’
9t )s ~ \TeE /s 3E /s ( F

from (6.48) and (6.54) that
o (ERO-(EN ) ()

ds ow \(2) ow )™ 1 4 (2) OE
(o) =) () —(Gr).

and from (6.52) and (6.55) that

w_ )TN ) )

_ ow ow

N R S N Y

(7.289)
From (6.61) through (6.64) we obtain, respectively,

LV - C (7.290)

aT — r ’ /.

() (%))

dw _‘/ ey —ey 0
9T CEENe 7.291
ar T[( ;95) )(:)_(;9_5]);1)] ’ ( )

T BRI ERIY
%:]/ [gufE)\ (acuf ;(1)J ’ (7.292)

1 \@ T ()
N T —{—
dw _ /_ (=) ()] (7.293)
ds (ag )<2> %E \(D °
ow | P—( ow )s
These are the basic relationships for second-order phase transi-

tions.
7.9.3. Now we will show how these relations can be applied to a

and
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second-order phase transition in a superconductor without an exter-
nal magnetic field.

From (7.31) it follows that the heat of the phase transition from
the superconducting to the normal state is

_ THervsuper dHer

q= I A (7.294)

This shows that when H,. = 0 (i.e. at 7 = T,,), the heat of the
phase transition vanishes (experiments show that dH,../dT is finite
for any temperature). Thus, an ordinary phase transition in a super-
conductor without an external magnetic field becomes a second-
order phase transition. On the curve representing the transition
from the superconducting to the normal state the point where H,; = 0
is singular.

Equations describing this second-order phase transition can be
obtained from (6.44) through (6.66) if we assume that ¢ = — H
and w = j. In particular, Eq. (6.61) for the discontinuity of the
heat capacity with the generalized force kept constant can be written
for this case as

cSyper _pnorm ___ [( aj;ulger )T
- (%) ] (5ar) (7.299)

Bearing in mind that, in accordance with (7.30)

Jsuper = — Usupel'H/4:IT

and that, as we noted]in Sec. 7.2,

jnorm = O, (7°296)
we obtain
(jf%%r_)T: — [( Piper ), H+ Veuper | (7.297)
and
(_f’ingoﬂ;m_)T:o, (7.298)

Experiments show that the specific volume of a superconductor in
the superconducting state varies very little with the strength of an
external magnetic field (there is no magnetostriction); in other words,

(%)ﬁo. (7.299)

13%
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Taking into account (7.297) through (7.299), from (7.295) we obtain

2
T — chprm = Lauperl (Afler )E (7.300)

This equation determines the magnitude of the discontinuity in
the heat capacity ¢ o m for the phase transition from the supercon-
ducting to the normal state in the absence of an external magnetic
field. It is called the Rutger equation and shows that, since its right-
hand side is always positive, the heat capacity ¢,,,m at the phase
transition from the superconducting to the normal state drops sud-
denly.



8 The Mathematics
of the Critical Point

8.1 Thermodynamic Relations for the Critical Point

8.1.1. The point on the saturation line where the liquid and vapor
phases become indistinguishable is known as the critical point. It
is the final point on the line of the liquid-vapor phase transition,
which begins at the triple point. We will denote thermodynamic
paramelers at the critical point by pcy, ey, Uer, €te.

In accordance with what we have just said,

v —v' =0 8.1)
at the critical point and, hence,
v = v = v¢,. (8.2)

The heat of vaporization, r, also vanishes at the critical point.
This follows from the Clausius-Clapeyron equation (7.198). If we
write (7.198) as

r=1("—v")-2-, (8.3)

combining this with (8.1) and bearing in mind that dp/dT cannot be
infinite, we see that at the critical point

r=20. (8.4)

From experiments we know that the critical isotherm (7., = const)

has in the p, v-diagram a horizontal inflectional tangent at the criti-
cal point and, hence,

(2= 5
(22)7 =0 6

Similarly, experimental data shows that the following lines have
at the critical point a horizontal inflectional tangent: an isobar in
the T,v-diagram, so that

(Z-)7=0 (8.7)

p
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and
oeT cr__ .
(5). =05 (8.8)
an isotherm in the p,s-diagram, so that
aop cr—_
(W)T =0 (8-9)
and
a%p er
( - )T_o, (8.10)
an isobar in the T,s-diagram, so that
aT \cr
(Ta?),, =0 (8.11)
and
92T \cr
(732—),, =0, (8.12)
an isobar in the T,k-diagram, so that
aT \cr
(%), =0 (8.13)
and
*T \cr
(F=), =0 (8.14)
finally, an isotherm in the p,k-diagram, so that
ap \er __ -
()5 =0 (8.15)
and
a%p er
(52 ), =0 (8.16)

Combining (8.11) with (5.100) or, which is the same, (8.13) with
(5.106), we find that

¢y = oo. (8.17)

We note that the derivative of pressure on the saturation line
with respect to temperature at the critical point (dp/dT)., and the
derivative of pressure with respect to temperature on the isochore
v = v, at the critical point (dp/dT);" are finite; this is clear from
the physical meaning of these quantities.

The behavior of the corresponding curves in the phase diagrams at
the critical point is schematically shown in Fig. 8.1.
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We note that Eqs. (8.7) through (8.17) do not represent different
independent properties of a substance at the critical point. In the
final analysis, all these relations describe one experimental fact:
that the critical isotherm in the p,v-diagram has a horizontal inflec-

7) 5
. S Y, 7)

C'o”:z'.

n n S$

Fig. 8.1

"

tional tangent at the critical point; whence, we can obtain Egs.
(8.7) through (8.17) from (8.5) and (8.6).

Let us show this by an example. We will obtain (8.7) and (8.8)
from (8.5) and (8.6). From (2.68) we see that

(&)= () (5 ) (8.18

Since, as noted earlier, (dp/dT)s" is finite, combining (8.18) with
(8.5) yields (8.7).

Next, we determine the value of (92T/6v?),. Differentiating (8.18)
with respect to v with p kept constant, we obtain

(5 )= %w (%)= ()5 (5], 619
In accordance with (2.71) we write

(3 (), L~ [3 (), )+ (3 (2),L(5), o

or, which is the same,

[ (%) )= ()t or (), G20
Taking into account (8.21), from (8.19) we obtain
( (j:v]: )p: o cijyc;v (—%)T+( szl; )T+ 66;13317 ( (Z: )p' (8'22)

An analysis of the experimental p,v,T-data for the near-critical
region shows unambiguously that (92T/dp dv)er and (9°p/dT Ov)°*
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are not infinite. ! Taking this into account and bearing in mind (8.5),
(8.6), and (8.7), from (8.22) we obtain (8.8).

Similarly, if we combine the Maxwell equation (4.4a) with (8.7),
we obtain relation (8.9) and so on.

8.1.2. Experimental data shows (see Fig. 8.1) that the total de-
rivative of the specific volume on the saturation line with respect to
temperature, dv,/dT, become infinite at the critical point. It is ob-
vious that

dv’
lim 22 = oo, (8.23)

To=T¢r dT

and
av”
Tg>Ter T
Since according to (2.8)

dU — dU dT (8.25)

dp — dT dp °

and, as already noted, d7T/dp is finite at the critical point, combining
this equation with (8.23) and (8.24) yields relations for dv'/dp and
dv”/dp similar to (8.23) and (8.24).

Similarly, ds,/dT is infinite at the critical point, and here (see
Fig. 8.1)

lim 2 = oo, (8.26)
Te=Ter
lim 2 = — oo, (8.27)
To=Ter

Combining these with (7.18), we find that

lim ¢g= oo, ‘ (8.28)
Tog=Ter
lim ¢;= — oo, (8.29)
To"Tcr
Since
ds _ ds dT (8.30)

dp 4T dp’

taking into account the above remarks, we obtain relations for ds’/dp
and ds”/dp similar to (8.26) and (8.27). The situation is the same with
dh,/dT, dus/dT, and df;/dT at the critical point.

S
1 Whether these quantities are zero or nonzero remains open to question,
but it is clear that they cannot be infinite.
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From the given relations it is clear (see Fig. 8.1) that

()0 e (@)oo e
()0 e (20 e

There is an interesting and important question concerning the cur-
vature of the boundary curve at the critical point, i.e. the values
of the second derivatives, such as
(d*T/dv?),, and (d*T/ds?).,. Experi-
mental data (see Fig.8.1) would seem 7 ‘
to show, at first glance, that these
derivatives are finite and negative at
the critical point. However, it is ar-
gued that (d*T/dv*)., and (d*T/ds?),, c
and other similar derivatives are
zero. This question cannot be solved
unambiguously due to the reasons to
be discussed in Sec. 8.2.

8.1.3. Experimental data shows that ——
at the critical point the saturation T
line in the p,7-diagram matches Fig. 8.2
smoothly, without a salient point,
the critical isochore (v.r = const) (Fig. 8.2). This means that.

P\ _ (3P 5)
(FT_)cr - ( aT )vcr ? (830)
which is known as the Planchk-Gibbs equation, or rule.
Extensive experimental data for a great variety of substances prove
the validity of Eq. (8.33). Let us derive this equation analytically.
In accordance with (2.81) we can write

2= () (2 % 50

From (8.5), (8.22), and (8.23) it follows that for the critical point.
there appears an indeterminate form O-oco in the second term on the
right-hand side of (8.36). We will try to evaluate the indeterminate:
form by L’Hospital’s rule. To this end we write (8.36) as

dp \©
ap op g __ (W)T a7y
aT —( aT )v_ a7 (8.57)
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and take the derivatives of the numerator and denominator on the
right-hand side of this relation. The peculiar feature is that the numer-
ator contains the partial derivative with respect to v with 7 kept
constant, while the denominator contains the total derivative with
respect to v along the saturation line. But it is obvious that we must
take the derivative of the same form of hoth the numerator and denom-
inator. Therefore, we take the total derivative of the numerator
and denominator with respect to v. Then (8.37) yields

d ( op )0
. dp adp \07 . dvg v /T
lim [__(_) ]= 1im . 8.38
T_’Tc[‘ dT 0T v T_'Tcr d2T ( )
d'ﬂo

For the quantity in the numerator on the right-hand side of (8.38),
it follows from (2.81) that

d_(0p\o [0 (p\°) [ 0 (dp)o7 dT
E):(_OT-)T_[aU (ay )T]T +[ oT ( v )T . dUg ’ (8.39)
or, which is the same,

d ap)O_ azp)o_L(azp 6 dT
dvg ( dv T_( ovt |t ! 0Tav) dva (8.40)

If we combine this with (8.38), we can write

()t (ora)

. dp or \%7) _ 1. vt J7 T \aT av dvg
Jim [ = (57), | = lim T - (841
cr er _
dvfr

Taking into account (8.6) and (8.31) and bearing in mind that
(0*p/dT dv)°er is finite and (d*T/dv?)., is nonzero, from (8.41) we obtain
the Planck-Gibbs equation (8.35).

We note that this derivation is valid so far as (d*T/dv?),; is nonze-
r0. Otherwise on the right-hand side of (8.41) there appears an inde-
terminate form 0/0 that cannot be evaluated. However, the brilliant
experimental verification of the validity of the Planck-Gibbs equa-
tion (8.35) can be considered an argument for the statement that
(d2T /dv?)., is nonzero. Nevertheless, the given derivation of the
Planck-Gibbs equation cannot be regarded as rigorous because the
value of (d?T/dv?),, remains undefined.

8.1.4. The Planck-Gibbs equation can be generalized to caloric
state surfaces. By the method similar to the one given above we can
show that

(45)= ()= ()= ()= (%) e
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This relation implies that at the critical point the lines s = const,
u = const, 2 = const, and f = const, just as the critical isochore,
have a common tangent with the saturation line.

These relations are completely verified by experimental data
(Fig. 8.3). To derive these relations we must bear in mind the notes
on the curvature of the boundary curve at the critical point that
were made for the derivation of Eq. (8.39).

8.1.5. The experimental data on the p,v,7T-dependence shows that
the critical isochore near the critical point is almost a straight line.

MPa KkJ/kg-°C
700
7 . Cy A
16 ;
/}\/ 37415°C
f
\
* 8 l \ 375°C
| [J
! &
//1:
_/
V| 380¢
0 vo!
0 2 3y, 4 cmyg
200 300 400 500°C
Fig. 8.3 Fig. 8.4

This is verified by the experimental data on the heat capacity c¢,:
the values of ¢, on the critical and near-critical isotherms on the
¢,, v-diagram pass through the maximum atv = ver (this is illustrat-
ed by the experimental data for water in Fig. 8.4); consequently,
in the near-critical region

dcy . .
(5=),=0 (8.43)
and since according to (5.128)
dep _ atp
( v )T_T ( aTz)v, (8.44)
it follows that near the critical point
o2p '
(775),,, =0 (8.45)

cr

(VVith the increase in temperature the critical isochore becomes in-

creasingly steeper.)
8.1.6. We also note that Eq. (5.165)

(6p)_(ap)__7;_ 6p)2
ov |s ov /T cv(aTv
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combined with (8.5) and (8.35) for the critical point assumes the
following form:

(22)7= T (222 5.0

8.1.7. The thermodynamic behavior of pure substances at the criti-
cal point has so far been studied insufficiently. Essentially, we know
very little about the critical point. Above we noted what facts can
be regarded as firmly established: at the critical point the first and
second derivatives of pressure with respect to volume or entropy
at I’ constant and of temperature with respect to volume or entropy
at p constant vanish, the heat capacity ¢, is infinite, and the satura-
tion line and critical isochore match smoothly (the Planck-Gibbs
rule). This scant list probably exhausts all the reliable facts which
we have relating to a thermodynamic analysis of the critical point
of a pure substance.

Much more extensive is the list of questions that have not yvet been
answered:

(a) Do the derivatives (83p/av3)7, (8*p/ov*)F, etc. have zero or
nonzero values?

(b) Does the mixed derivative (0°p/dT dv)°r have a zero or nonzero
value?

(¢) Do such quantities as the heat capacity ¢, and the sound veloc-
ity a undergo a continuous or discontinuous change when passing
through the critical point?

(d) What is the behavior of the curvature of the boundary curve at
the critical point, i.e. are the second derivatives (d*T/dv?.,,
(@*T/ds?)¢,, etc. nonzero, and what is the saturation line curvature
at the critical point in the p,7-diagram, i.e. is the value of (d>p/dT?).,
Zero or nonzero?

(e) Is the heat capacity ¢, finite or infinite at the critical point?
And correspondingly (see Eq. (8.46) with due regard for (5.191))
is the sound velocity equal to zero at the critical point?

In spite of the categorical statements of some authors, a detailed
analysis shows that there are no unambiguous answers to these and a
number of other related questions.

The reader probably noticed that in this section we often use such
phrases as “experimental data shows that” while the differential
equations of thermodynamics are almost not used. We must under-
stand that practically all relations given in this section are no more
than a simple statement of the results of experiments. The few rela-
tions derived in this section are either not flawless from the point of
view of the strictness of their derivation (the Planck-Gibbs equation
is not flawless because we do not know exactly whether (d*T/dv?),,
differs from zero, and Eq. (8.45) because we do not know whether
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¢;" is finite) or useless for an analysis of the critical point (Eq. (8.46)

because we are uncertain about the value of ¢). The means that we
have at our disposal for analyzing the critical point are scanty, while
for an analysis of the behavior of a substance on the boundaries
and in a two-phase region there is a wide variety of thermodynamic
relations.

What is the reason for this peculiarity of the problem of describ-
ing thermodynamic properties of a substance at the critical point
among other problems of thermodynamics? Let us examine these
questions in detail.

8.2 Describing the Thermodynamic Properties
of a Substance at the Critical Point

8.2.1. The complexity of the problem of a thermodynamic descrip-
tion of the critical point given in Sec. 8.1.7 is explained by the sin-
gular behavior of the critical point on the thermodynamic state sur-
face of a substance. If we use differential equations for the critical
point. which are valid for all the other states of a substance, there
appear in many relations (as a result of this singularity) indetermi-
nate forms that cannot be evaluated. Due to these forms the mathema-
tical tools of thermodynamics begin to “slip” at the critical point.
This difficulty is basic: it is not that unambiguous proof of the state-
ments of the thermodynamics of the critical point under discussion
has not been found as yet, as a nonspecialist may think, but that in
principle ordinary differential equations do not enable us to find such
proof or relations for the critical point by a rigorous method.

Here is an example to show that it is useless to try to solve the
problems of thermodynamics of the critical point with the help of
ordinary differential equations of thermodynamics. We will try to
establish whether the discontinuity in the heat capacity ¢, retains
its value or vanishes at the critical point when crossing the boundary
curve.

Recall that the value of the discontinuity in ¢, on the boundary
curve is determined by Egs. (7.84) and (7.86), which we can write
thus:

o two-ph 0 one-ph _ ( op )0 ( dvg )‘3 -
€ Cr T\ T \dTlT | ° (8.47)

If we combine this with (8.5), (8.23), and (8.24) in order to determine

. vo-pl -nl o, . .
the quantity Ac, = ¢J *VO PP — 2P 44 the critical point, we see

that on the right-hand side of Eq. (8.47) there appears an indeter-
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minate form 0- oo. Let us evaluate this indeterminate form by L’Hos-
pital’s rule. If we write Eq. (8.47) as

. ap g
c° one-ph — 0 two-ph ( — )
v v _ ov /T (8 48)

T - ( aT )2 ’ )

dvg

we can differentiate the numerator and denominator on the right-
hand side of this relation by taking the total derivatives with re-
spect to v:

o
o8 one-ph __ .0 two-ph d‘j (3—5) r
lim — — = lim ——m——. (8.49)
T-T T>T al d
~Ler cr 2 ——
dvq dvf).

Using (8.40), we can transform this relation to

2 g 2 a
¢ one-ph__ 0 two-ph 6 IZ - 9% \o d4T_
) Cp —C . vt Jr oT ov dvs _
lim = lim 5 (8.50)
ToT T ToT aT 4eT
~der cr 2 >
dl)o' 600

Taking into account (8.6) and (8.31) and the above-mentioned remarks
about the quantities (9%p/0T dv)*r and (d*T/dv?).,, we see that on
the right-hand side of Eq. (8.50) there again appears an indetermi-
nate form 0/0. Further attempts to evaluate this indeterminate form
do not yield a positive result.

Thus, the mathematical tools of thermodynamics do not enable us
to evaluate indeterminate forms in the ordinary thermodynamic re-
lations if we apply them to the critical point. Meanwhile, even today
some authors state in all sincerity that using the ordinary differential
equations of thermodynamics they have managed to formulate cer-
tain new conclusions about the tliermodynamic properties of a sub-
stance at the critical point. Understandably, a thorough analysis al-
ways reveals some mistake in such works. In this connection we must
realize that if any work claims to have obtained new conclusions about
the properties of substances at the critical point using ordinary
differential equations of thermodynamics, it must contain a more
or less veiled mathematical mistake.

8.2.2. We must call attention especially to a typical mathematical
error often encountered in works on the thermodynamics of the
critical point. The reason for this error is a stereotype that researchers
acquire while studying mathematical analysis. As we know from anal-
ysis, the second derivative of a function at the point of inflection is
zero. But this statement has one exception important for the thermo-
dynamic treatment of the critical point.
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We wrote relation (8.6) and others similar to it for the critical
point on the basis of the jabove-mentioned statement of mathemati-
cal analysis. It may seem that we can write (3°0/dp%)F = 0O for the
critical point with the same degree of reliability as we did for (8.6),
since here we also speak of the second derivative at the point of in-
flection of the function. The situation with (8%/dp®)T, however, is
far more complex than it may seem at first glance. Let us examine
the (dv/dp)r versus p and the v versus p dependence on the critical

| ()

Ior=const

P Per 7

Fig. 8.5

isotherm (Fig. 8.5). The graphs in Fig. 8.5 show that since the quan-
tity (dv/dp)r becomes infinite when approaching the critical point.
both from the left and from the right, in other words, undergoes a
discontinuity of the first kind at the critical point, the derivative
(0(0v/dp) v18p) v = (8*/dp?) r is not defined at the critical point. The-

refore, the relation (6%v/dp®7 = 0 is absolutely unjustified. It is
obvious that the situation is the same with all the functions that
have a vertical tangent at the point of inflection, i.e. an infinite first
derivative. And since, as already noted (see Fig. 8.1), the critical
isotherms in the v,p-; s,p-, and %,p-diagrams and the critical iso-
bars in the v, T-, s, T-; and k,T-diagrams are just such functions,
we must always bear in mind this characteristic feature when applying
thermodynamic relations to the critical point.

8.2.3. The following question is in order. If the differential equa-
tions of thermodynamics do not make it possible to arrive at unam-
biguous conclusions concerning the properties of a substance at
the critical point, then why cannot we analyze these properties by a
precision experiment?

Unfortunately, the accuracy of experimental data rapidly dimin-
ishes when approaching the critical point. This is explained not by
an imperfection of measuring devices but by difficulties of a funda-
mental nature. The point is that for an overwhelming majority of
thermodynamic quantities the so-called reference error of the meas-
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ured quantity becomes infinite with the approach to the critical point.
Therefore, we cannot overcome mathematical complexities solely by
a direct experiment. _

8.2.4. We cannot discuss here the interesting attempts to describe
the properties of a substance at the critical point by the methods of
statistical physics as well as by the methods of scaling theory be-
cause, first, this is beyond the scope of this book and, second, the
degree of reliability of the results obtained by these methods is not
well-defined. .

8.2.5. But how can we advance in describing the thermodynamic
properties of a substance at its critical point? Progress in solving this

problem can be achieved only by
vk developing special mathematical
tools suitable for examining this
singular point on the thermodynam-

ic state surface of a substance.
8.2.6. In conclusion, one more
~ interesting observation may be made
CRC concerning the problem of investi-
gating the critical point even
D though it may seem controversial.
f at present we have no mathemat-
Fig. 8.6 ical tools for operating with such
singularities as the critical point,
it may prove effective to use formally nonrigorous limiting
relations (each time, of course, substantiating the possibility of their
application). By limiting relations we mean the application to the
critical point of relations that are strictly valid however near this

point.

Here is an example to explain this. As we have noted before, the
quantity (0*v/0p?) ¢ cannot be defined at the critical point by ordi-
nary methods. However, everywhere along the line of inflection
points of the isotherms (we know from the experiment that as this
line approaches the critical peint, it smoothly matches with the
critical isotherm; Fig. 8.6) the equality

(%)T: (8.51)

is satisfied up to the critical point. Thus, (8.51) is valid arbitrarily
near the critical point. Right at the critical point the critical isotherm
has an inflection, too. These circumstances, possibly, enable us to
apply (8.91) to the critical point proper.

Next, it is easy to notice the characteristic feature that the isobar-
isotherms in a two-phase region acquire all the peculiarities typical
of the critical point. Indeed, since in the p,v-, T,v-, p.s-, T,s-,
p,k-, and T,h-diagrams an isobar-isotherm in the two-phase region
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is a horizontal line, the relations similar to (8.5) through (8.18) are
valid for it. The relations (7.68) are similar to Planck-Gibbs equa-
tions (8.36) and (8.43). This enables us to assume that the critical
point, which is a limiting point in the two-phase region, acquires all
the peculiarities typical of isobar-isotherms in the two-phase region.
This is not surprising, since the critical peint is, in essence, a degen-
erated (subtended to zero) isobaric-isothermal straight line. If this
statement is valid, then, for one, for the critical point we can use
the relation obvious for the two-phase region
9*p \two=ph oy

() =0 (8.52)
and similar relations.

Such methods of examining the thermodynamic properties of the
critical point are less preferable, of course, than the one mentioned
in Sec. 8.2.9, due to the insufficiently rigorous nature of the state-
ments used. However, until special mathematical tools suitable for
examining the critical point have been found, such a method may be
considered justified and useful. The history of physics knows many
cases when tools nonrigorous from the mathematical point of view
did not prevent obtaining conclusions whose substantiation was given
subsequently.

Such an approach can be justified by the analogy with the well-
known method of determining a function at the point of dlscontinuity
of the first kind. We recall that a discontinuity of the first kind is where
the function is, strictly speaking, not defined but limits to this
function exist on both sides of the point of discontinuity; these lim-
its are taken as the values of the function at the point of discontinui-
ty.

In conclusion we stress once more that the observations made in
Sec. 8.2.6 should not be regarded as indisputable. Nevertheless, their
detailed discussion, which is beyond the scope of this book, could
be useful.

Any further investigations of difficult but interesting problems of
thermodynamics of the critical point are, obviously, of great impor-
tance.

15-0427



9 Complex
Thermodynamic Systems

9.1 The Basic Thermodynamic Relations
for Complex Systems

9.1.1. In Sec. 1.1 we agreed to call thermodynamic systems perforn:}-
ing other work besides work of expansion complex systems. In this
chapter we will consider only complex systems performing no more
than two types of work simultaneously, one being the work of ex-
pansion. For such systems the differential of work performed by the
system is given by (1.8)

dL = pdV + EdW,

or in (mass) specific values by (1.8a)
dl = pdv + Edw,

where & is the generalized force with the exception of pressure, and
W (the mass specific value is w) is the generalized coordinate with
the exception of volume.

The combined equation of the first and second laws of thermodynam-
ics for the complex systems under consideration is written in the
form (1.30)

7dS = dU + pdVv + Edw,

or in (mass) specific values in the form (1.30a)
Tds = du + pdl) + §dw.

~ The Maxwell equations for complex systems were obtained in Sec.
4.2. For mass specific quantities these are (4.17), (4.18), (4.20),
(4.21), (4.23), (4.24), (4.26), and (4.27); similar equations are de-
rived for the entire system.

9.1.2. We will obtain differential equations describing the behav-
ior of different specific complex systems by a single method,
namely, by using Egs. (1.30), or (1.30a), the Maxwell equations and
the equation of state of the given complex system.

Detailed analysis of the thermodynamic peculiarities of complex
systems exceeds the limits of this book.! Therefore, below we give
only the basic relations for different complex systems.

1 For detailed analysis of these problems see the book: V.V. Sychev, Com-~
plex Thermodynamic Systems, Mir Publishers, Moscow, 1981.
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9.2 Systems in a Magnetic Field

9.2.1. We know that for a maguetic substance in a magnetic field
the magnetic field strength taken with a minus sign, -H, is the gen-
eralized force, &, and the magnetization of the substance, j, is the
generalized coordinate, w.

Hence, the combined equation of the first and second laws of ther-
modynamics (Eq. (1.30a)) for a system in a magnetic field is written

as follows:
T ds=du+ pdv— Hdj. (9.1)
Combining this with the Legendre transformation (3.48), we see
that
T ds=dh* —vdp + jdH, (9.2)

where
h* = y 4 pv — Hj, (9.3)

which is the enthalpy of a system in a magnetic field (sece Eq. (1.15a)).
In accordance with (4.17a), (4.20), (4.23a), and (4.26) we can write
the Maxwell equations for a system in a magnetic field as

(57 ). .= (7 );. o> (9.4
(_gi—)n,p: —(%)s_p’ (9-5)‘
(5 ) == (50 (9.6)
( (;);" H,p - (j—s-)y I’ (9-7)

We know from physics that the equation of state of a magnetic sub-
stance that relates magnetization to magnetic field strength is writ-
ten thus

j=yH, (9.8)

where y is the mass specific magnetic susceptibility.
9.2.2. If we combine (9.1) with (9.6) and (9.8), we find that

()= 1+ 2 ()L 09
Similarly, combining (9.2) with (9.7) and (9.8), we obtain
(gi;)T.pZH[T(O_‘d}’_)u_p—_xJ' (9.10)

14%
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The heat capacities of a magnetic substance at H and j constant
(provided that the pressure of the surrounding medium is constant),

determined, according to (5.99), by obvious relationships

s
cit.p=T (37 ),

and
Cjp= T (g—;)j.p,

are related thus:

eyt () ()
Cu,p—Cj,p= aT /uH,p\ 0j JT,p?

or, ‘which is the isame,

c —C = T (_(7]' ) (aH)
H,p jop = ar Ju,p\ aT /iyp

and

np=err=T (37); , (37
H.p Jop T i,p oH Ty P

(9.11)

(9.12)

(9.13)

(9.14)

(9.15)

We derived these relationships in the same way as (3.109)-(5.111).
From (9.8) it is clear that the partial derivatives in Eqgs. (9.13)

through (9.15) can be written as

(%)H, p=][ %-)H.p’

(%)T,p=X+H (%)T.p’
and

(%)J'.p: _% (%’)5.17'

We can easily show that

( dcy. p ) 7 ( 92 )
oH! T,p 8T | H, p?

or, which is the same,

¢, p ) o 9%y
( oH T,'p_IH ( aT“)H.p’
and that
( dcy, p ) r (9
o Ir,pT T ( PYE )J.P’
or

(9.16)

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)
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9.2.3. We know that magnetic substances in a magnetic field are
characterized by the following thermodynamic effects.

(1) The magnetocaloric effect: the temperature of a magnetic sub-
stance changes with the strength of the external magnetic field.

(2) The magnetostrictive effect: the body’s volume changes when the
strength of the external magnetic field varies.

(3) The magnetoelastic effect: the magnetization changes with the
external pressure.

The magnetocaloric effect is characterized by the value of (87 /0H).
It is evident that the value is different for different thermodynamic
processes (with the change in the field strength) in which a magnetic
substance is involved. Of particular interest is the magnetocaloric
effect that occurs when the state of the substance is changedladiabat-
ically; here the effect is characterized by the value of (0T/0H);
In accordance with (2.67) we can write

aT ds or
(77)s =7 ) e o (5 )0 (9-23)
whence, taking into account (9.7) and (9.11), we obtain
oT \ T (9
(G_H)s,p— _CH,p (_ET—)H,p’ (924)
or, taking into account (9.16),
aT . TH ax
(37 )0 = 205 (5 ) (9-29)

Since ¢ u,p is always positive, the sign of the adiabatic magnetocalor-
ic effect is determined by the sign of (6%/0T) g p- The magnetostric-
tive effect is characterized by the value of (60/0}1),, and the magneto-
elastic effect by the value of (8j/8p) ;. Just as the value of (T /6H)
is, these values are different for different thermodynamic processes.
These effects are of the greatest interest in adiabatic and isothermal
conditions.

We can easily establish a relationship between the values of (dv/dH),
for adiabatic and isothermal conditions. According to (2.71) we can

write
av ov av oT
(37 )= (77 ) e ot (57 ) (5 ). (9.26)
In the same way we can write a relation connecting the values of
(0j/0p) iy for adiabatic and isothermal conditions:

(%)s, H:(%)T, P (5_7,')11 H(%)s, " (9.27)

Thermodynamics enables us to establish a one-to-one relationship
between the magnetostrictive and magnetoelastic effects. For the
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systems under consideration (magnetic substances in a magnetic
field), Eqs. (3.68a)
( oh* ) o
op /1, &

( oh* )
p =Ww
s /T, p

will be written, respectively, as

and (3.69a)

( aah; )T. H =V (9.28)
and
(%5 )r, == 0.2

“éhere h* is the enthalpy of a magnetic substance determined by
{9.3).
According to (2.12) and (2.13), it follows from (9.28) and (9.29) that

(_a"%)s‘_p: — (j_;) .- (9.30)
In a similar manner, Eqs. (3.76a)
( aaci* )s. sV
and (3.77a)
(F5)., =

for the systems under consideration can be written as

op* _
( ap ) n= Y (9.31)
and
op* _ ,
(W)s,p—_—]’ (9.32)
where
¢* =u+ pv — Hj — Ts (9.33)

is the chemical potential of the magnetic substance (see (3.59a)).
In accordance with (2.12) and (2.13), from (9.31) and (9.32) we

obtain
(:_Il;'):r, 1)=_(Z_;;)T, e (9.34)
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Equations (9.30) and (9.34) enable us, for one, to calculate the
variation in the volume of a magnetic substance with! magneto-
striction as follows:

H
v(s, p H)—v (s, p. H=0)= g (
0

av
= ) dir (9.35)
and

v(T, p, Hy—v (T, p, H=0)=

O ey m

(jT)T JdH.  (9.36)

From (9.8) it follows that
9\ g (9
(_6.0_)11'“11(611 )H’ (9.37)

Taking into account (9.34) and (9.37) and bearing in mind that the
value of (dz/dp)y can be regarded for all practical purposes inde-
pendent of H, from (9.35) and (9.36) we obtain

H? 4
v(s, p H)—v (s, p H=0)= — 5= (&) . (939)
and

v (T, p» Hy—v (T, p, H=0)= —i"'-(a—x

2 op )T. H® (9.39)

Similarly, we can easily obtain the relations determining the var-
iation in j with the magnetoelastic effect (the change in the exter-
nal pressure from p to p -~ Ap). From the obvious relations

v+Ap

i p+Ap, H)—j(s p H)= | (L) ,dp  (9.40)
p
and
pt+Ap Py
J(T, p+ap H)—i (T, p )= | (L), ,dp.  (941)
P

taking into account (9.37) and the fact that usually (dy/0p)y
changes little with pressure, we find that

i(ss p+Ap, Hy—j (s, p, H)=H(%)S.HAp (9.42)

and

i(T, p+Ap, Hy—j(T, p, H)=H(-§—3§)T.HA1). (9.43)
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9.2.4. Superconductors are a special variety of magnetic substan-
ces. In Sec. 7.2 we noted that the mass specific magnetization of a
superconductor in the superconducting state is given by Eq. (7.30)

Jsupes = — U-uperHcr/4ﬂo

where Ugyper is the specific volume of a superconductor in the super-
conducting state and H, is its critical magnetic field, and its spe-
cificmagnetizationin the normal state, j,orm, is negligible as compared
with jsyper (i.€."superconductors in the normal state are practically
nonmagnetic). In other words, for superconductors

Y super = — Usuper/4-"'t (9.44)
and (9.45)

Ypnorm = 0.

In Sec. 7.2 we discussed the Keesom equation (7.31) for the phase
transition curve of a superconductor from the superconducting state

to the normal:
dHer 4niq

ar Tvsuperer’

where ¢ is the heat of this phase transition.

The relation that connects the values of the heat capacities
¢y p of a superconductor in the superconducting and normal states
on the phase transition line is important for the thermodynamics of
superconductors (for the phase transition in a superconductor this
relation plays the same role as the Planck equation (7.223) for the
liquid-vapor phase transition).

According to (7.25), we can write for the phase transition of the
superconductor

Sporm — Ssuper — Q/T (946)

If we take the total derivatives of the left and right sides of (9.46)
with respect to temperature along the line of phase transition, we
obtain

a$norm dsgyper __ 1 aq q
e = o () (9-47)

Next, in accordance with (6.4) and (6.5), we can write

dSnorm __( 0s )norm ds \norm gH,. 9.48
ar -(6T H,p+(6H)H,p aT ( )
and
dssuper __ (_(ji)super (ﬁ.)super dH or (9.49)
dT ~\dT Ju,p 0H)t,p dT '
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or, taking into account (9.11) and (9.7),

norm .
d8n0rm :cH. P + ( ajnm‘m ) dH(‘I‘ (q ,)0)
aT T oT H,p dT v
and
super )
dSsuper =CH. p _1_( ajsuper ) dHcr (9 r)1)
ar T ‘ ar H,p dT -~ B

Using (9.50) and (9.51), from (9.47) we obtain

d.; j
csuper_cnormz_q__ﬂ_]‘[(ﬂ) _(ajnﬂ) :IdHcr
H,p H,p T dT oT JH.p or JH,pd dT °

(9.52)
Combining this with (9.8), we find that
CH p —CH,p = —g,— —-gd;,i— TH l:(_ale}li’er )H' .
d4norm dHcr .
_(__OT )H,p oL (9.53).

Taking into account (9.44) and (9.45), we can transform this rela-
tion to
csuper__cnorm__q____di TH (al’super)
H,p H.p ="p 77347 7 4a oT JH,p"
Since we can assume with a high degree of accuracy that
(0Vsuper/0T) ur.p = O at the transition temperature,® we can write
Eq. (9.54) as

(9.54)-

q d
clyper _ norm _ =z (9.95)

Next, from (7.31) we see that the heat of phase transition of a su-
perconductor from the superconducting to the normal state is

Usuper TH dHr

9= 4r dt (9-56)

Combining this with (9.55), we obtain

super __ norm _ vsuper” [ (dHcr )2 L, _H dvsuper dH ¢p I d*H ey
CHa p Hv P — 43’[[ dT ! USUDPF dT dT de
(

2 In this connection we recall that, in accordance with the Nernst heat.
theorem, the derivativ: (9v/dT), decreases as we approach absolute zero and

lim (ﬁ;—) =0
T-0k \ T Jp

],
9.57)



218  The Differential Equations of Thermodynamies

or, bearing in mind that at the temperature of transition from the
superconducting to the normal state dvg,pe /dt = 0,

vsuper! [ dlf g \2 d2H
iy ety == [ (FE) r ] 09

This is the relation connecting the values of ¢y p in the supercon-
ducting and normal phases on the phase transition curve.

For the phase transition in a superconductor in the absence of an
external magnetic field (H = 0), Eq. (9.58) assumes the form;

v T , dH 9
super norm super cr

We discussed this relation (known as the Rutger] equation) in
Sec. 7.9, Eq. (7.300), where we obtained it in a different way, as a
particular case of the Ehrenfest equation (7.290) for the second-order
phase transition (we recall that the phase transition of a supercon-
ductor from the superconducting to the normal state at H = 0 de-
generates into a second-order phase transition).

Equations (9.38) and (9.39) combined with (9.44) and (9.45) enable
us to calculate the variation in volume of a superconductor with
magnetostriction. These relations yield, [irst,

H? auv
Usuper (8, P, f])_vsuper (s, p, H=0)= P (% )s a (960)

and

H2 ¢ Ov
Vsuper (T, p, H) —vguper (T, p, H:G):-BT( ja‘l?e’)jy‘H, (9.61)

Since (0v/dp)s and (0v/dp) ¢ are always negative, the volume of a su-
perconductor in the superconducting state decreases as the strength
-of the external magnetic field grows. Next, since according to (5.122)
the adiabatic compressibility is less than the isothermal compressi-
bility, the volume of a superconductor in the superconducting state,
as H increases by one and the same value, decreases more in isother-
mal conditions than in adiabatic. Second, since according to (9.45)
a superconductor in the normal state is nonmagnetic, the magneto-
strictive effect here is zero.

Similarly, if we combine (9.42) and (9.43) with (9.44), we see that
for a superconductor in the superconducting state the variation in
the specific magnetization due to the magnetoelastic effect is given
thus:

) . H ov r
jsuper (5, P+Ap, H)—jsuper (5, p, H) = —47(_2‘;?8 )s,HAp

(9.62)
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and
Jsuper (T1 p+Ap, ]{)_fsnper(Ta p, )
Ir dlsuper
= T a ( Jp )'r, UAP' (9-63)

For reasons similar to those given above it follows that, first, the
magnetization of a superconductor in the superconducting state in-
creases with pressure and, second, this effect is greater in absolute
value in isothermal conditions than in adiabatic. From (9.42) and
(9.43), taking into account (9.45), we see that a superconductor in the
normal state has no magnetoelastic effect.

9.3 Systems in an Electric Field

9.3.1. We know that for a dielectric in an electric field the electric
field strength taken with the minussign, — £, is the generalized force,
£, and the polarization of the dielectric, 5, is the generalized
-coordinate, V.

Hence, the combined equation of the first and second laws of ther-
modynamics (Eq. (1.30)) for such a system is

T'dS =dU + pdV — E d}, (9.64)
and for volume specific quantities

Tds,=du,+ p2-—EdP, (9.65)

where s, = S/V,, u, = U/V, and P = R/V,, and V, is the volume
of the dielectric at certain fixed parameters 7, py, and E,.

If we use the Legendre transformation (3.48), we can write (9.64)
and (9.65) as

7dS = dH* — V dp + RdE (9.66)

and
T ds, = dhy — 20 + P dE, (9.67)

0
where

H* = U + pV — ER (9.68)

and
Wt =u, +p— EP (9.69)

are the total enthalpy and the volume specific enthalpy, respective-
ly, of the system in an electric field.
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Equations (4.17¢c), (4.20b), (4.23c), and (4.26b) for the whole
system assume the form

(Z_?)s,v:(g—f B,y (9.70)
(55 )e = (35 )s.» (9.71)
(g—?)z‘,v: ‘(Z—T)qsv (9.72)
(%) e 0= (35 r. (9.73)

For volume specific quantities the Maxwell equations have the same
form except that B and S are replaced by P and s,.

We know that the polarization of a dielectric (the electric dipole
moment per unit volume of the dielectric), P, is related to the
electric field strength £ by

P = aE, (9.74)

where o is known as the electric. or dielectric, susceptibility. This rela-
tionship can obviously be regarded as the equation of state for a
dielectric in an electric field. It is common practice in calculating
dielectrics to write the dielectric susceptibility o as

a = (g — 1)/4mn, (9.75)

where € is called the permittivity of the dielectric, and, hence, the
equation of state (9.74), is written thus

—1
P=2—FE. (9.76)

In calculating the generalized coordinate, magnetization j, of
magnetic substances, discussed in the previous section, it is common
to use mass specific quantities, while in calculating dielectrics the
practice is to write the generalized coordinate, polarization P, in
terms of volume specific quantities. In view of this we employ vol-
ume specific values of enthalpy, entropy, and other thermodynamic
quantities.

9.3.2. If we combine (9.65) with (9.72) written for volume specific
quantities and (9.76), we obtain

(55 )r v =E[ 1+ 5= (57)n v ) (9.77)

Similarly, combining (9.67) with (9.73) written for volume specific
quantities and (9.76), we find that

(58), =7 ( &), ,— et1]. (9.78)
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In accordance with (5.99), the volume heat capacities of a dielectric
at £ and P constant are determined in the obvious way:

Ce.o=T (54 )i (9.79)

and

Co, p=T (¢ ). - (9.80)

By the same method as we used for deriving Eqgs. (5.109) through
{(9.111), we can easily show that

CorCrp=T (2. (5),, 081
or

cE,p—cP'p=—T(g—f;)Elp(Z—ﬁ)P'p, (9.82)
or that

ConCop =1 (), (), 0 O

From (9.76) it follows that we can write the partial derivatives on
the right-hand sides of Eqs. (9.81) through (9.83) as

op E [ ot
(W)E,lpzﬁ(ﬁ)&p’ (984)
opP _ 1T oe ‘ _
(W)T,gp_!;—nl_E(T)T']p‘l‘ 8—1], (9.85)
and
0E) £ (o
(57 )orr= =7 (57)5.,- (0.86)
From (9.79), using (2.13) and (9.73), we easily obtain
Cg, p _ 92pP
( B! )T.’ﬁ)— (W)E p’ (9.87)
or, which is the same,
LoCg, p ___T_E_ “92g "
( oE )T".’r'?— 4n ([a—TT)E.:po (9.88)
Similarly,! jwe can show that
‘9Cp, p _ __mf OE
( oP )T. P T'( oT? )P-ﬂp’L (9.89)

or

(%%52),., =woir o= (75, = (5%),, )8 @90
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9.3.3. We know that dielectrics in an electric field are character-
ized by the following thermodynamic effects.

(1) The piezoelectric effect: the variation of the polarization of a
dielectric with the external pressure.

(2) The electrostrictive effect: the variation of the volume of a die-
lectric with the electric field strength. In a certain sense this effect
is the opposite of the piezoelectric effect.

(3) The pyroelectric effect: the change in the polarization of a die-
lectric when its temperature changes.

(4) The electrocaloric effect: the change in the temperature of a die-
lectric when the electric field strengih changes. This effect is the op-
posite of the pyroelectric effect.

The piezoelectric effect is characterized by the value of the deriv-
ative (0R/0p)y and the electrostrictive effect by the value of the de-
rivative (0V/9E),. It is clear that each derivative will be different
for different thermodynamic processes. An examination of these
effects in adiabatic and isothermal conditions is of the most practical
interest.

Equations relating the values of (913/dp)y for adiabatic and iso-
thermal conditions, according to (2.71), can be written as

In a similar way we can easily obtain an equation relating the va-
lues of (AV/3E), for adiabatic and isothermal conditions:

(2)s. =55 )r .+ (57 ), (55 )s - (9.92)

It is obvious from general thermodynamic reasoning that there is
a unique relation between the piezoelectric and electrostrictive
effects. We can obtain this relation in the following way. For the sys-
tem under consideration relations (3.68)

oIl * ,
:I/
( op )1

and (3.69)

ol * o
( 6'.5, )’1‘.p_ W
can he written as
OH* .
( o) = (9.93)
and
oH*
( Y5 )T,p=-,1;, (9.94)

where the enthalpy of a dielectric, /*, is determined by (9.68).



9. Complex Thermodynamic Systems 223

In accordance with (2.12) and (2.13), it follows from (9.93) and

(9.94) that
(%)s,,F o (9.95)

Similarly, from (3.76)

oD*
( op )s, g 4
and (3.77)
dD* ,
( ot )S, p =W,
which we can write for a given system as
od* o
(), -7 @0
and
oD*
(55 )5, = = (997
where, according to (3.59a),
O* =U 4 pV —ER—-TS (9.98)

is the isobaric-isothermal potential of the system, using (2.12) and

(2.13), we obtain
(%)T.p= —(%)T,E' (9.99)

Next, we see that the pyroelectric effect is characterized by the
derivative (8P/0T)g ,, while the opposite electrocaloric effect by the
derivative (87/0F),. 1In principle the electrocaloric effect occurs in
any thermodynamic process involving a dielectric (not an isothermal
process obviously); but the adlabatlc processes, characterized by
(0T /OE) s,p, are the most interesting from the practicalistandpoint.

From (2.67) we see that

(55 )= (55 ) (58 )i (9.100)

Taking into account (9.73) written for the volume specific quanti-
ties and (9.79), we find that

(%—)s =—TET,_p (%;‘)—)E.p' (9.101)

This equation relates the magnitudes of the electrocaloric and py-
roelectric effects.
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9.3.4. An important particular case of a thermodynamic system
involving a dielectric in an electric field is the electrical capacitor.
We will not discuss in detail the thermodynamics of an electrical
capacitor, but will only give some initial informations.

For a thermodynamic system that includes a capacitor and an elec-
tric field, the voltage across the plates, V, is the generalized force,
E, and the electric charge, Z, is the generalized coordinate, W. The
combined equation of the first and second laws of thermodynamics

(1.30) for this system can be written as

T dS = dU + p dV — Vdz, (9.102)

while the set of the Maxwell equations is
(5 )s.v=(5)ev (9.103)
(%)%,f —(%)S, )9 (9.104)
(Z—g)f v “(éavl)z, v’ (9.105)
(%)%-P:(%)T,;f (9.106)

Finally, the equation of state of such a system, namely, the equa-
tion relating the electric charge on a capacitor plate, Z, and the volt-
age across the plates, V, has as we know from electrostatics, the

following form:
Z =0V (9.107)

where © is the capacitance of the capacitor.
These are the main aspects of a thermodynamic description of the

electrical capacitor.

9.4 Systems in a Gravitational Field

9.4.1. The elementary work performed in lifting a body of mass
G to a height dz in a gravitational field is

dL* = gGdz, (9.108)

where g is the acceleration of gravity. Hence, for a system in a grav-
itational field the weight gG is the generalized force, §, and the
height of the center of gravity of the system, z, is the generalized co-
ordinate, W. Therefore, in accordance with (1.30), the combined equa-
tion of thelfirst and second laws of thermodynamics for a system in
a gravitational field can be written as

T dS = dU -+ p dV + gGdz, (9.109)
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or for mass specific quantities (if the mass G of the system remains
constant)
Tds=du+ pdv—+ gda. (9.110)

9.4.2. Interestingly, for a system in a gravitational field, as we can
see from (9.109), the weight gG of the body in contrast to other known
generalized forces is an extensive rather than intensive quantity.
The generalized coordinate, height z, however, is not extensive but
intensive. In this connection we note that Eq. (9.109) can be trans-
formed to a form more “common” from the point of view of the inten-
sity and capacity factors. To thisend we use the Legendre transforma-
tion

Gdz = d (Gz) — zdG, (9.111)
and from (9.109) find that
T'dS = d (U + gGz) 4+ p dV — gzdG. (9.112)

The sum U -+ gGz in this equation can be interpreted as the “to-
tal” energy of the system:

U* = U + gGz, (9.113)

by analogy with the total enthalpy of such a system defined in the
general case by Eq. (1.15). The enthalpy H* of the entire system is

H* = U + pV + gGz. (9.114)

If we combine the Legendre transformation (3.4) with (9.114),
from (9.112) we obtain

T dS = dH* — V dp — gzdG. (9.115)

These are the basic relations for thermodynamic systems in a
gravitational field.

9.5 Elastically Deformed Systems

9.5.1. We consider a solid (a rod) which is elastically deformed un-
der a tensile (or compressive) force ¥. Here ¥ is the generalized force,
E, and the length of the rod, [, is the generalized coordinate, W.
Hence, the combined equation of the first and second laws of thermo-
dynamics (Eq. (1.30)) for such a system is written as

TdS =dU + pdV — V¥ dl. (9.116)

Since under tension the rod’s volume usually changes very slightly
(as we will see later), for most cases of practical importance we may
assume to a good approximation that V is constant and write (9.116)
as

TdS =dU — V¥ di. (9.117)
15—=0427
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In accordance with (4.17¢), (4.20b), (4.23c), and (4.26b), for an
elastically deformed rod the Maxwell equations (with either p or
V kept constant) are as follows:

(37 ) v=(57), v (9.118)
(o )q, == (5% )s. (9.119)
(%)T ( )1 v’ (9.120)

(%)w,p:(%)r,p' (9.121)

Itisevident that the magnitude of the tensile (or compressive) force
on the rod can be expressed as

¥ = yQ, (9.122)

where Q is the cross-sectional area of the rod, and 1 is the tensile
force per unit cross-sectional area, or stress. In practice the change
in the size of the solid under stress is expressed in terms of the rela-
tive change in length, or strain, €, as

e = (I — lp)/l,, (9.123)
where [, is the length of the rod in the absence of a load, and !/ is

the length of the rod under a load. From (9.123) we see that
dl = lyde + (1 +¢€)dl, (9.124)

(l¢ changes with temperature).
Taking into account (9.122) and (9.124), we can write (9.117) as

TdS =dU—pV, (de+ (1+¢) ‘”0) (9.125)

where V, = Ql, is the volume of the rod prior to deformation. This
can be transformed to

T ds, = du, — { (de + (14-¢€)d In 1,), (9.126)

where s, and u, are the volume specific entropy and internal energy
at a fixed temperature.

The equation of state for an elastically deformed rod widely used
in the theory of elasticity is the well-known Hooke's law, which is
usually written as

1 -
==V, (9.127)

where E is the modulus of elasticity (Young’s modulus).
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9.5.2. If we take into account the Maxwell equation (9.120), we
can write (9.117) as

(B e

Combining this with (9.122), (9.123), and, (9.127), we obtain

(aa[l’)TV 9[(E Tt ) +£lo3a,l_], (9.129)

where

L [ al
=1 (57) (9.130)
is the linear thermal expansion coefficient of the material of the rod.

In a similar way we can obtain a relation for the dependence of
the enthalpy H* of the deformed rod on the force ¥. In accordance
with Eq. (1.15), the enthalpy of the system under consideration can
be written as

H* = H 4+ pV — % (I — 1,). (9.131)

We must note that for Win (1.15) we take not the length of the rod I,
but the difference I — [,, which is the change in the rod’s length
under the force ¥; the physical meaning of this remark is obvious.

9.5.3. The process of rod deformation is accompanied by changes
in the temperature of the rod, i.e. the elastocaloric effect. Of the most
interest from the practical standpoint is the evaluation of the elas-
tocaloric effect when the rod is deformed adiabatically (the adiabat-
ic elastocaloric effect is sometimes called the Joule effect). It is evi--
dent that the adiabatic elastocaloric effect is characterized by the de-
rivative (dT/¥)g p.

To calculate (6T/0‘P)S p» we use the Maxwell equation (9.119)

or ol
(57 )5, = (55 )w.,- (9-132)
In accordance with (2.6) we can write
ol _al oT
(Eg—)‘lf p_(ﬁ)‘lf,p(—ag—)‘l",p' (9133)
We see further that
oT T
(ES'_)W_p:c_‘p,pG’ (9.134)
where
ds
co.5=T(57),., (9.135)

159
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is the specific heat capacity of the material at constant stress (this
value practically coincides with the constant-pressure heat capacity
¢p), and G is the mass of the rod.

If we combine (9.130), (9.133), and (9.134) with (9.132), we obtain

aT olyT
(W)s,p:_ c,,oG : (9.136)

This relation enables us to calculate the change in temperature due
to the elastocaloric effect.

9.5.4. We can account for the change in the volume of an elastic
rod as follows. We can show that at constant temperature the
change in the volume of the rod with its length is determined by

S~ (1—2) de, (9.137)
0

where p is known as the Poisson ratio and is defined by the ratio
e,/e, where ¢ is the relative longitudinal deformation (see (9.123)),
and e, is the relative transverse deformation of the rod.

If we use (9.137), we can write (9.116) as

TdS =dU + Vol(1 — 2p) p — ] ds, (9.138)
or in volume specific quantities
T ds, = du, + [(1 — 2p) p — p] ds. (9.139)

Unlike (9.117) and (9.126), these relations account for the change in
the volume of an elastic rod at constant temperature. The reader
can easily find the relations for a varying temperature.

9.5.5. Aside from problems concerning longitudinal deformation
of an elastic rod, it is interesting in some cases to consider an elas-
tic rod subjected to a certain torque . For such a thermodynamic
system the torque Wt is the generalized force, &, and the angle
through which the rod is twisted by the torque 9t in the generalized
coordinate W. The combined equation of the first and second laws
of thermodynamics (1.30) is then written as

T dS = dU + p dV — d,. (9.140)

A detailed thermodynamic analysis of torsion in a rod can be done
in a way similar to that for a stretched (or compressed) rod; in the
corresponding differential equations we must replace ¥ by 9 and [
by .

9.6 Voltaic Systems

9.6.1. We know that for a reversible voltaic cell the electromotive
force, &, is the generalized force and the electric charge, Z, is the
generalized coordinate. Hence, the combined equation of the first
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and second laws of thermodynamics (1.30) is written as
T dS =dU + pdV — €dZ. (9.141)

If the volume of the system is kept constant (and only this case is
analysed when studying the thermodynamics of a voltaic cell), this
relation assumes the form

T dS = dU — gdZ. (9.142)

The Maxwell equations (4.17¢c), (4.20¢), (4.23b), and (4.26b).as
applied to a reversible voltaic cell can be written in the following
form:

N

(57)s V=(%)z v (9.143)
(77?) (3? )s p’ (9.144)
(0—5)1' (gﬁ )Z v’ (9.145)

(37 )s.v=3 )., (9.146)

We also know that the emf, &, of a reversible cell is a function of
temperature and does not depend on the extent to which the cell is
charged. Therefore, (1) Eq. (9.146) is meaningless since if T is con-
stant so is € (and vice versa), and (2) Egs. (9.144) and (9.145) are
identical and can be written as

(%)T,p,v:_%- (9.147)

Thus, for a reversible voltaic cell the system of Maxwell equations
consists of two equations only, namely Egs. (9.143) and (9.147).

9.6.2. Next, let us examinefhow the internal energy U of a voltaic
cell changes with charge Z at constant temperature. (We assume that
the pressure in the system remains unchanged, p ='const, and the
change in the volume of the system is negligible, V = const.) Equa-
tion (9.142) then yields

() v=T (5 ), , T & (9.148)

If we combine this with (9.147), we obtain

oU d€
(O—Z)T'V=£—T-dT. (9.149)
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After integration we arrive at a relation that enables us to deter-
mine how much the internal energy of a reversible cell changes as
the charge changes by AZ = Z, — Z, at T = const:

z, .
Uy (T, Z)—U, (T, Z) = | (&~ ) dz. (9.150)
Z,

Since € depends solely on the temperature, from (9.150) it follows
that

. g\ ,,
Up (T, Zo) = U (T, 2) = (§—T 57 ) (Za—21).  (9.151)

Furthermore, since in the system under consideration p and V
are constant, from the definition of “ordinary” enthalpy (1.14)

H=U-+ pV
it is evident that here
U,—U,=H,—H, (9.152)
and Eq. (9.151) can be expressed as

Hy(T, py Z)— H((T, py Z) = (8T 32) AZ.  (9.153)

In this equation the difference between the enthalpies of the system
in the final and initial states in a process taking place under isobar-
ic-isothermal conditions is, according to (5.80), simply the heat of
the isobaric-isothermal reaction:

Qp =H,—H,.
With this in mind, we can write Eq. (9.153) as follows:

0,=(8—T &) az. (9.154)

This important equation connects the heat of reaction, Qp, in a
voltaic cell and the cell’s emf, €. It is known as the Helinholtz
equation.

If we compare this equation with the Gibbs-Helmholtz equa-
tion (5.82)

—Q,=Lpr—T(50T)

we see that the Helmholtz equation for a voltaic cell (9.154) is a par-
ticular case of (5.82).
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9.7 Two-Dimensional Surface Systems

9.7.1. We know that the interface between two phases has spe-
cial features: there is surface tension and the surface layer as a whole
has excess internal energy (called surface energy). This surface layer
is very thin (of the order of several monomolecular layers) and since
its volume is negligible if compared with the whole bulk of the lig-
uid, we are justified in assuming that the surface layer has zero thick-
ness (and, hence, zero volume) and that the special features of this
layer (excess energy, for one) manifest themselves only at the surface
of the liquid. We will then speak of surface energy, surface heat ca-
pacity, surface entropy, etc.

9.7.2. Let us study a thermodynamic system that is an interfacial
surface with no thickness. For such a system the surface area, &, is
the generalized coordinate, W, and the surface tension taken with the
minus sign,-o, is the generalized force, E. The surface tension o is
a unique function of temperature. The functional relationship
o (T) for a given substance is the equation of state for the system under
consideration.

The combined equation of the first and second laws of thermodynam-
ics (1.30) for this two-dimensional system (V' = 0) can be written as

T dS = dU — ¢ d@. (9.155)

For the given system we can write the Maxwell equations (4.17¢c),
(4.20b), (4.23c), and (4.206b) as

(%i)s:(%)gn (9.156)
(—‘3?);— &) (9.157)
(%)Tz_(o—g)g’ (9.158)

(%):(%)T (9.159)

Bearing in mind that o is a unique function of temperature, we see
that, first, Egs. (9.157) and (9.158) are identical and can be written

as
oS\ _ 1 aSy do .
(=)=(=)="2 (9.160)
Second, it is obvious that Egs. (9.156) and (9.159) are meaningless.
Indeed, since T is constant, so is o, and the derivatives in (9.159)

are zero. We easily see that the situation is the same with the de-
rivatives in (9.156). From (2.71) it follows that

(57 )s=(57),+ (=), & (9.161)
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Since (0©/0T); = 0 and, of course, (9&/da)y = 0, it is obvious
that the derivative (0&/07)g also equals zero.

9.7.3. The entropy, internal energy, and other caloric quantities
for a surface can be written as

S = 5,8, (9.162)
U= u,G, (9.163)

etc., where s, and u, are the area specific values of S and.U (since
mass and volume are meaningless concepts for a two-dimensional
system, the specific quantities can only be referred to a unit area).

Next, differentiating (9.162) and (9.163) with respect to © with
T kept constant, we obtain

(%=),=%+8(2%), (9.164)
(55 ),=w+e (), (9.165)

Since both s, and u, depend only on temperature, they character-
ize the properties of coexisting phases (just as o does). Hence, we can
write (9.164) and (9.165) as

s(,:(j—g)T, (9.166)
wo=(22),- (9.167)

The entropy s, can easily be determined via Eq. (9.160): from
(9.160) and (9.166) we see that

S = — T2 (9.168)

In this case the equation for the total entropy of the surface, (9.162),
is

do . :
S=——76. (9.169)
Let us now turn to ugy. From (9.155) it follows that
ou v [ 08 . -
('0—5—)1": ! (35)1‘*0' (9.170)

If we combine this with (9.160) and (9.167), we obtain
d ~
ug=0—T = (9.171)

The equation for the total internal energy of a surface, (9.163), then
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assumes the form:
U_‘ ly _d_o_ . .1'—
(0—1' dT)C (9.172)

9.7.4. The area Specific heat capacity of a surface layer, ¢, is
determined, according to (5.99), by the obvious relation

— 7 ( 9% 9.1
‘o=1 ( oT )e (B-173)
Using (9.169), we can write (9.173) as
d2
Co = ‘TFT‘Z" (9.174)
9.7.5. From relation (3.9)
F=U—-TS
and relation (3.59)
O* = U + pV + EW — TS,
which for the given system can be written as
with due regard for (9.169) and (9.172), it follows, respectively, that
F = oG (9.176)
and
d* = 0. (9.177)

Hence, we see that the area specific values of 7 and @* are, respec~
tively,

fo=o0 (9.178)
and

p* = 0. (9.179)

We are not surprised at (9.179) since the mass of the surface layer is
Zero.

9.7.6. If we now turn to an ordinary three-dimensional system com-
posed of a pure substance, the combined equation of the first and sec-
ond laws of thermodynamics for such a system (1.30), in which sur-
face effects are taken into account, is written as

7 dS = dU + p dV —|o[d€.

As to the thermodynamic properties of such a system, the relations
for U, H, F, ®, S, and the heat capacities of the system are deter-
mined by the obvious relations reflecting the additivity of these
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quantities:

do
U=uG+(o—TS5) G, (9.180)

, d
f[:lzGT(c—Td—;)@, (9.181)
F =[G + 0B, (9.182)
D = ¢G, (9.183)

v d

S = s(,—d—‘T’- S, (9.184)
C,=c,6—-T22 ¢, (9.185)
Coee6—T 3G, (9.186)

where G is the mass of the substance in the system. Obviously, when
the ratio of the surface area of a liquid to its volume is small, the
contribution of the surface of the liquid to the thermodynamic
functions of the liquid is negligible.

9.8 Radiation in a Cavity as a Thermodynamic System

9.8.1. Equilibrium electromagnetic radiation in a closed cavity
(photon gas) is a simple system performing only work of expansion.
The only difference between the thermodynamic description of this
system and that of usual simple systems is the specific character of
the equation of state. In this connection we will briefly discuss the
differential equations of the thermodynamics of such systems.

9.8.2. Electrodynamics uses the notion of radiation density u,,
which is defined as the amount of radiation energy per unit volume

u, = U/V, (9.187)

where U is the total radiation energy in the given cavity, and V
is the cavity volume. We know from electrodynamics that u, is a
function of the temperature alone and is independent of volume.
Hence, from (9.187) written as

U=ulV,
it is clear that
oU
( W)T =u,. (9.188)

.Combining this with (5.2), we find that
d
u, =T (2F) —p. (9.189)
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It is known from electrodynamics that electromagnetic radiation
exerts pressure on a surface, which either reflects or absorbs the ra-
diation. The radiation pressure and radiation density are uniquely
related in the following manner:

p = uy/3. (9.190)
Taking this into account, we can transform (9.189) to
T du, Up
Uy = —7— 3 (9.191)

(since u, depends on the temperature alone, the derivative of u, with
respect to 7 is total).
Solving this differential equation, we obtain

u, = aT*, (9.192)

where a is a constant. This equation relates the radiation density
to the temperature and is known as the Stefan-Boltzmann law.

Substituting (9.192) into (9.187), we obtain the relation for the
total radiation energy in a volume V:

U = al*V. (9.193)

Combining (9.190) with (9.192), we arrive at the following rela-
tion between radiation pressure and temperature:

p==5T" (9.194)

This equation can be considered as the equation of state for a photon
gas. We see that in a photon gas an isobar is an isotherm.
9.8.3. The Maxwell equations for the system under consideration
are written in their usual form, relations (4.1b) through (4.4b).
For one, from (4.3Db)

05\ (2B
(W)T_( aT )V
with due regard for (9.194), we see that

(47), =+ aT?, (9.195)

whence it is obvious that

SV, T)==aTV (9.196)
is the entropy of a photon gas in volume V; obviously, at V =10
(i.e. when there is no system that contains the photon gas) the en-

tropy equals zero.
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From (9.196) we see that the volume specific entropy of the radia-
tion is

5, (T) =% aTs, (9.197)
which obviously depends only on temperature.

9.8.4. The isobaric-isothermal potential, defined by the general
formula (3.13)

O =U-+pV —T8S,
proves to be zero for a photon gas: taking into account (9.193),
(9.194), and (9.196), from (3.13) we obtain
d = 0. (9.198)
This also implies that the chemical potential of a photon gas is zero.

9.8.5. The volume specific (constant-volume) heat capacity of a
photon gas, C,, is defined by the conventional relation

C,=T(5¢)., (9.199)
which when combined with (9.197) yields
C, = 4aT?. (9.200)

As to the constant-pressure heat capacity of a photon gas, since,
as we noted before, an isobar is also an isotherm for radiation and
the heat capacity of an isothermal process is infinite, we find that
for a photon gas C, = oo.



Notation Index

Latin Symbols

a Thermodynamic sound velocity
C, Heat capacity at z = const
c, Specific heat capacity at z = const

Electric field strength
Young's modulus (Sec. 9.5)
Electromolive force
Isochoric-isothermal potential

Massieu function
Specific isochoric-isothermal potential

Specific Massieu function

Mass

Acceleration of free fall

Enthalpy

Magnetic field strength (Secs. 7.2, 9.2)

Characteristic function of the variables U, V, and G/T
Specific enthalpy

Characteristic function of variables U and p/T
Specific value of the characteristic function [
Specific magnetization

Adiabatic exponent

Work

Any type of work other than expansion work
Specific work L

Length of a deformed rod (Sec. 9.5)

Specific work L*

M Mach number
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P Electric dipole moment per unit volume of the dielectric (Sec. 9.3)

Q Amount of heat

Qp Heat of isobaric-isothermal reaction

0Op Heat of isochoric-isothermal reaction

q Specific amount of heat

q Heat of phase transition of superconductor from the supercon-
ducting state to the normal (Secs. 7.2, 9.2)

R Gas constant

r Heat of phase transition

S Entropy

s Specific entropy

T Thermodynamic temperature

U Internal energy

7 Characteristic function of the variables U, p/T, and ¢/T

u Specific internal energy

14 Volume

v Specific volume

w A generalized coordinate with the exception of volume
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Specific value of the gencralized coordinate W
Flow velocity (Sec. 5.7)
Degree of dryness of the two-phase system

Generalized coordinate ‘
Specific value of the generalized coordinate Y

Charge of a reversible voltaic cell (Sec. 9.6)
Height

N NT N § &

German Symbols

¢ Capacitance of a capacitor

b)) Torque

B Polarization of a dielectric

S Surface area

B Voltage across the plates of an electric capacitor
Greek Symbols

a Bulk thermal expansion coefficient

a Dieleciric susceptibility (Sec. 9.3)

o, Linear thermal expansion coefficient

Br Coefficient of isothermal compressibility

Bs Coefficient of adiabatic compressibility

r Grand potential

Cramers function

Permittivity of a dielectric (Sec. 9.3)

Strain (Sec. 9.5)

Generalized force

Characteristic function of the variables S, p, and ¢
Integrating factor

Joule-Thomson coefficient

Poisson ratio (Sec. 9.D)

Any generalized force with the exception of pressure
Characteristic function of the variables S, V and ¢
Density

Area of the channel’s cross-section

Surface tension

Isobaric-isothermal potential

Planck function
Chemical potential

Specific Planck function

Specific magnetic susceptibility

Tensile (compressive) force

Stress

Cross-sectional area of the deformed rod
Twist angle
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Subscripts
G Denotes values on the saturation line

Superseripts
* Denotes quantities referring to complex thermodynamic systems
one-phase Denotes quantities for one-phase region
two-phase Denotes quantities for two-phase region
(1) and (2) Denote quantities for two coexisting phases
' Denotes the liquid phase
Denotes the vapor phase



Subject Index

adiabatic exponent 126, 127
adiabatic inaccessibility
principle of 25

boundary curves 136

capacity factor 11
Carathéodory, C. 24
Clausius equation 182
Clausius-Clapeyron equation 151, 152
coefficient
adiabatic compressibility 125
adiabatic expansion 125
bulk thermal expansion 117
isothermal compressibility 124
Joule-Thomson 31, 125, 180
contact transformation 28
coordinate
generalized 11
curve
boundary 136
left 149
right 149
saturation 149
transition 149

degree of dryness 150

effect
elastocaloric 227
electrocaloric 222
electrostrictive 222
magnetocaloric 213
magnetoelastic 213
magnetostrictive 213
piezoelectric 222
pyroelectric 222
Ehrenfest equation 192
energy
internal 101
enthalpy 13
specific 13
partial derivatives of 102
entropy 14
specific 14
equation
continuity 129
Clausius 182
Clausius-Clapeyron 151, 152
discontinuity 140
Ehrenfest 192
first law of thermodynamics 12
Gibbs 56

equation
Gibbs-Duhem 57
Gibbs-Helmholtz 111
Helmholtz 230
Laplace 126, 127
Maxwell 88
phase transition 154
Planck 183
Planck-Gibbs 201
Poisson adiabatic 127
Poynting 155
Rutger 196, 218
second law of thermodynamics 12
of state 9
equilibrium criterion 35
Euler condition 21
exponent
adiabatic 126, 171
Bernoulli 131
isentropic 126
extensive quantities 9

factor
integrating 23
intensity 11
force
external 9
generalized 11
form
Pfaffian 19
formula
Mayer's 116
function
characteristic 39
composite 17
discontinuity of 29
Kramers 73
Massieu 959
Massieu-Planck 57
Planck 60
process 10, 20
state 10, 20

generalized coordinate 1%
generalized force 11
Griineisen relation 117

heat

of phase transition 152
heat capacity

isobaric 31

isochoric 31
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Helmholtz equation 230
Hooke's law 226

ideal-gas state 104
indeterminate form 206
integrating factor 23
intensity factor 11
intensive quantities 9
isentrope 105

isobar 105

isochore 105

isolines 156

isotherm 104

Jacobian 31
Joule efiect 227

Keesom, W.H. 154
Knoblaugh, A. 120

laws of thermodynamics
first 12
second 12
L’ Hospital’s rule 201
line
constant dryness 177
saturation 149

Mach number 130
Mayer's formula 116

parameter(s)
state 48
thermodynamic 9
Pfaffian form
holonomic 23
nonholonomic 23
phase diagrams 10
phase transition 148
heat of 152
first-order 190
liquid-vapor 197
second-order 190
point(s)
critical 31, 158, 197
of discontinuity
of the first kind 30

of the second kind 30

salient 136

Poisson ratio 228
potential
chemical 47, 53
grand 70
isobaric-isothermal 37
isochoric-isothermal 37
thermodynamic 39
process
isobaric 122
isochoric 121
isothermal 102 .
thermodynamic 10

quantities
additive 41
extensive 9
intensive 9
specific 45

region
one-phase 149
two-phase 149
relation
Griineisen 117

Shaw, A.N. 33
state surface 10
caloric 202
Stefan-Boltzmann law 235

system
complex 11
isolated 35
simple 11
thermodynamic 10

theorem
Bernoulli-Euler 18
on inverse quantitiesi17
Nernst heat 217

transformation
contact 28
Lecgendre 28

Vulis, L. 133

Young’s modulus 226















